【題目】如圖,矩形紙片ABCD中,AB=4,BC=6.將該矩形紙片剪去3個等腰直角三角形,所有剪法中剩余部分面積的最小值是( 。

A.6
B.3
C.2.5
D.2

【答案】C
【解析】解:如圖以BC為邊作等腰直角三角形△EBC,延長BE交AD于F,得△ABF是等腰直角三角形,
作EG⊥CD于G,得△EGC是等腰直角三角形,

在矩形ABCD中剪去△ABF,△BCE,△ECG得到四邊形EFDG,此時剩余部分面積的最小=4×6﹣ ×4×4﹣ ×3×6﹣ ×3×3=2.5.
故選C.
以BC為邊作等腰直角三角形△EBC,延長BE交AD于F,得△ABF是等腰直角三角形,作EG⊥CD于G,得△EGC是等腰直角三角形,在矩形ABCD中剪去△ABF,△BCE,△ECG得到四邊形EFDG,此時剩余部分面積的最小本題考查幾何最值問題、等腰直角三角形性質(zhì)等知識,解題的關(guān)鍵是探究出如何確定三個等腰直角三角形,屬于中考選擇題中的壓軸題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為了幫助九年級學生做好體育考試項目的選考工作,某校統(tǒng)計了本縣上屆九年級畢業(yè)生體育考試各個項目參加的男、女生人數(shù)及平均成績,并繪制成如圖兩個統(tǒng)計圖,請結(jié)合統(tǒng)計圖信息解決問題.

(1)“擲實心球”項目男、女生總?cè)藬?shù)是“跳繩”項目男、女生總?cè)藬?shù)的2倍,求“跳繩”項目的女生人數(shù);
(2)若一個考試項目的男、女生總平均成績不小于9分為“優(yōu)秀”,試判斷該縣上屆畢業(yè)生的考試項目中達到“優(yōu)秀”的有哪些項目,并說明理由;
(3)請結(jié)合統(tǒng)計圖信息和實際情況,給該校九年級學生體育考試項目的選擇提出合理化建議.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=mx2+4mx﹣5m(m<0)與x軸交于點A、B(點A在點B的左側(cè)),該拋物線的對稱軸與直線y= x相交于點E,與x軸相交于點D,點P在直線y= x上(不與原點重合),連接PD,過點P作PF⊥PD交y軸于點F,連接DF.

(1)如圖①所示,若拋物線頂點的縱坐標為6 ,求拋物線的解析式;
(2)求A、B兩點的坐標;
(3)如圖②所示,小紅在探究點P的位置發(fā)現(xiàn):當點P與點E重合時,∠PDF的大小為定值,進而猜想:對于直線y= x上任意一點P(不與原點重合),∠PDF的大小為定值.請你判斷該猜想是否正確,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校是乒乓球體育傳統(tǒng)項目學校,為進一步推動該項目的開展,學校準備到體育用品店購買直拍球拍和橫拍球拍若干副,并且每買一副球拍必須要買10個乒乓球,乒乓球的單價為2元/個,若購買20副直拍球拍和15副橫拍球拍花費9000元;購買10副橫拍球拍比購買5副直拍球拍多花費1600元.
(1)求兩種球拍每副各多少元?
(2)若學校購買兩種球拍共40副,且直拍球拍的數(shù)量不多于橫拍球拍數(shù)量的3倍,請你給出一種費用最少的方案,并求出該方案所需費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2016年6月15日是父親節(jié),某商店老板統(tǒng)計了這四年父親節(jié)當天剃須刀銷售情況,以下是根據(jù)該商店剃須刀銷售的相關(guān)數(shù)據(jù)所繪制統(tǒng)計圖的一部分.

請根據(jù)圖1、圖2解答下列問題:
(1)近四年父親節(jié)當天剃須刀銷售總額一共是5.8萬元,請將圖1中的統(tǒng)計圖補充完整;
(2)計算該店2015年父親節(jié)當天甲品牌剃須刀的銷售額.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A在函數(shù)y= (x>0)的圖象上,且OA=4,過點A作AB⊥x軸于點B,則△ABO的周長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】動車的開通為揚州市民的出行帶來了方便.從揚州到合肥,路程為360km,某趟動車的平均速度比普通列車快50%,所需時間比普通列車少1小時,求該趟動車的平均速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道:光反射時,反射光線、入射光線和法線在同一平面內(nèi),反射光線、入射光線分別在法線兩側(cè),反射角等于入射角.如右圖,AO為入射光線,入射點為O,ON為法線(過入射點O且垂直于鏡面的直線),OB為反射光線,此時反射角∠BON等于入射角∠AON.
問題思考:

(1)如圖1,一束光線從點A處入射到平面鏡上,反射后恰好過點B,請在圖中確定平面鏡上的入射點P,保留作圖痕跡,并簡要說明理由;
(2)如圖2,兩平面鏡OM、ON相交于點O,且OM⊥ON,一束光線從點A出發(fā),經(jīng)過平面鏡反射后,恰好經(jīng)過點B.小昕說,光線可以只經(jīng)過平面鏡OM反射后過點B,也可以只經(jīng)過平面鏡ON反射后過點B.除了小昕的兩種做法外,你還有其它做法嗎?如果有,請在圖中畫出光線的行進路線,保留作圖痕跡,并簡要說明理由;
問題拓展:
(3)如圖3,兩平面鏡OM、ON相交于點O,且∠MON=30°,一束光線從點S出發(fā),且平行于平面鏡OM,第一次在點A處反射,經(jīng)過若干次反射后又回到了點S,如果SA和AO的長均為1m,求這束光線經(jīng)過的路程;
(4)如圖4,兩平面鏡OM、ON相交于點O,且∠MON=15°,一束光線從點P出發(fā),經(jīng)過若干次反射后,最后反射出去時,光線平行于平面鏡OM.設(shè)光線出發(fā)時與射線PM的夾角為θ(0°<θ<180°),請直接寫出滿足條件的所有θ的度數(shù)(注:OM、ON足夠長)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】揚州市體育中考現(xiàn)場考試內(nèi)容有三項:50米跑為必測項目;另在立定跳遠、實心球(二選一)和坐位體前屈、1分鐘跳繩(二選一)中選擇兩項.
(1)毎位考生有種選擇方案;
(2)用畫樹狀圖或列表的方法求小明與小剛選擇同種方案的概率.(友情提酲:各種方案用A、B、C、…或①、②、③、…等符號來代表可簡化解答過程)

查看答案和解析>>

同步練習冊答案