【題目】如圖,正方形中,點(diǎn)、、分別足,的中點(diǎn),、交于,連接、.下列論:①;②;③;④.其中正確的有( )

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

【答案】C

【解析】

連接AH,由四邊形ABCD是正方形與點(diǎn)EF、H分別是AB、BC、CD的中點(diǎn),易證得△BCE≌△CDF與△ADH≌△DCF,根據(jù)全等三角形的性質(zhì),易證得CEDFAHDF,根據(jù)垂直平分線的性質(zhì),即可證得AG=AD,由直角三角形斜邊上的中線等于斜邊的一半,即可證得HG=AD,根據(jù)等腰三角形的性質(zhì),即可得∠CHG=DAG.則問題得解.

解:∵四邊形ABCD是正方形,

AB=BC=CD=AD,∠B=BCD=90°,

∵點(diǎn)E、FH分別是AB、BC、CD的中點(diǎn),

BE=CF

在△BCE與△CDF中,

∴△BCE≌△CDFSAS),

∴∠ECB=CDF,

∵∠BCE+ECD=90°,

∴∠ECD+CDF=90°,

∴∠CGD=90°

CEDF,故①正確;

RtCGD中,HCD邊的中點(diǎn),

HG=CD=AD,故④錯(cuò)誤;

連接AH,如圖:

同理可證得:AHDF,

HG=HD=CD

DK=GK,

AH垂直平分DG,

AG=AD,GH=DH,故②正確;

∴∠DAG=2DAH,

在△ADH與△CDF中,,

∴△ADH≌△DCF

∴∠DAH=CDF,

GH=DH,

∴∠HDG=HGD

∴∠GHC=HDG+HGD=2CDF,

又∵AH垂直平分DG,

∴∠DAH=GAH,∠DAG=2DAH

∴∠CHG=DAG.故③正確;

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10袋小麥稱重后記錄如下(單位:kg).88.8,91,91.5,89,91.2,91.3,88.9,91.2,91,91.1

(1)如果每袋小麥以90 kg為標(biāo)準(zhǔn),超過的千克數(shù)記作正數(shù),不足的千克數(shù)記作負(fù)數(shù),這10袋小麥總計(jì)超過多少千克或不足多少千克?

(2)10袋小麥一共多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】52324日,蘭州市九年級學(xué)生進(jìn)行了中考體育測試,某校抽取了部分學(xué)生的一分鐘跳繩測試成績,將測試成績整理后作出如統(tǒng)計(jì)圖.甲同學(xué)計(jì)算出前兩組的頻率和是012,乙同學(xué)計(jì)算出第一組的頻率為0.04,丙同學(xué)計(jì)算出從左至右第二、三、四組的頻數(shù)比為41715.結(jié)合統(tǒng)計(jì)圖回答下列問題:

(1)這次共抽取了多少名學(xué)生的一分鐘跳繩測試成績?

(2)若跳繩次數(shù)不少于130次為優(yōu)秀,則這次測試成績的優(yōu)秀率是多少?

(3)如果這次測試成績中的中位數(shù)是120次,那么這次測試中,成績?yōu)?/span>120次的學(xué)生至少有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】企業(yè)舉行愛心一日捐活動(dòng),捐款金額分為五個(gè)檔次,分別是50元,100元,150元,200元,300元.宣傳小組隨機(jī)抽取部分捐款職工并統(tǒng)計(jì)了他們的捐款金額,繪制成兩個(gè)不完整的統(tǒng)計(jì)圖,請結(jié)合圖表中的信息解答下列問題:

1)宣傳小組抽取的捐款人數(shù)為_____人,請補(bǔ)全條形統(tǒng)計(jì)圖;

2)在扇形統(tǒng)計(jì)圖中,求100元所對應(yīng)扇形的圓心角的度數(shù);

3)已知該企業(yè)共有500人參與本次捐款,請你估計(jì)捐款總額大約為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,轉(zhuǎn)盤被等分成六個(gè)扇形,并在上面一次寫上數(shù)字1、23、4、5、6;若自由轉(zhuǎn)動(dòng)轉(zhuǎn)盤,當(dāng)它停止轉(zhuǎn)動(dòng)時(shí),求:

1)指針指向4的概率;

2)指針指向數(shù)字是奇數(shù)的概率;

3)指針指向數(shù)字不小于5的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因?yàn)?/span>sin30°=,sin210°=,所以sin210°=sin(180°+30°)=﹣sin30°;因?yàn)?/span>sin45°=,sin225°=,所以sin225°=sin(180°+45°)=﹣sin45°,由此猜想,推理知:一般地當(dāng)α為銳角時(shí)有sin(180°+α)=﹣sinα,由此可知:sin240°=( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料并解決有關(guān)問題:

我們知道:|x|,現(xiàn)在我們可以用這一結(jié)論來化簡含有絕對值的代數(shù)式,如化簡代數(shù)式|x+1|+|x2|時(shí),可令x+10x20,分別求得x=﹣1,x2(稱﹣1,2分別為|x+1||x2|的零點(diǎn)值).在實(shí)數(shù)范圍內(nèi),零點(diǎn)值x=﹣1x2可將全體實(shí)數(shù)分成不重復(fù)且不遺漏的如下3種情況:①x<﹣1;②﹣1≤x2;③x≥2

從而化簡代數(shù)式|x+1|+|x2|可分以下3種情況:

①當(dāng)x<﹣1時(shí),原式=﹣(x+1)﹣(x2)=﹣2x+1;

②當(dāng)﹣1≤x2時(shí),原式=x+1﹣(x2)=3;

③當(dāng)x≥2時(shí),原式=x+1+x22x1

綜上討論,原式=

通過以上閱讀,請你解決以下問題:

1)當(dāng)x2時(shí),|x2|   ;

2)根據(jù)材料中的方法化簡代數(shù)式|x+2|+|x4|;(寫出解答過程)

3)直接寫出|x1|4|x+1|的最大值   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABC=ACB,以AC為直徑的O分別交AB、BC于點(diǎn)M、N,點(diǎn)P在AB的延長線上,且CAB=2BCP.

(1)求證:直線CP是O的切線.

(2)若BC=2,sinBCP=,求點(diǎn)B到AC的距離.

(3)在第(2)的條件下,求ACP的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了更好的治理西流湖水質(zhì),保護(hù)環(huán)境,市治污公司決定購買 10 臺污水處理設(shè)備.現(xiàn)有 A、B 兩種型號的設(shè)備,其中每臺的價(jià)格,月處理污水量如下表:

A

B

價(jià)格(萬元/臺)

a

b

處理污水量(噸/月)

240

200

經(jīng)調(diào)查:購買一臺 A 型設(shè)備比購買一臺 B 型設(shè)備多 2 萬元,購買 2 A 型設(shè)備比購買 3 B 型設(shè)備少 6 萬元.

1)求 a,b 的值;

2)經(jīng)預(yù)算:市治污公司購買污水處理設(shè)備的資金不超過 105 萬元,你認(rèn)為該公司 有哪幾種購買方案;

3)在(2)問的條件下,若每月要求處理西流湖的污水量不低于 2040 噸,為了節(jié) 約資金,請你為治污公司設(shè)計(jì)一種最省錢的購買方案.

查看答案和解析>>

同步練習(xí)冊答案