【題目】自中國加入WTO以來,中美經(jīng)貿(mào)往來日益密切,貿(mào)易總量不斷攀升.據(jù)海關(guān)統(tǒng)計(jì),2018年中國對美國進(jìn)出口總值比2017年增長5.5%,其中進(jìn)口值下降5%,出口值大幅增長,且增長率是進(jìn)口值下降率的正整數(shù)倍,以致對美貿(mào)易順差(貿(mào)易順差=出口值-進(jìn)口值)進(jìn)一步加大.經(jīng)核算,2018年貿(mào)易順差增長率是出口值增長率的倍,則2017年的出口值占進(jìn)出口總值的百分比為_______.
【答案】70%
【解析】
設(shè)2017年的進(jìn)口值為x,出口值為y,總值為x+y,則2018年的出口值為(1-5%)x,出口值為(1+5n%)y,總值為(1+5.5%)x+y,其中n為正整數(shù),即可得到結(jié)論.
解:設(shè)2017年進(jìn)口值為x,出口值為y,總值為x+y;則2018年進(jìn)口值為(1-5%)x,出口值為(1+5n%)y,總值為(1+5.5%)(x+y).其中n為正整數(shù),
由題意得:(1-5%)x+(1+5n% )y=(1+5.5%)(x+y),
解得,
又,
將代入化簡整理得85n2-148n-44=0,
整理得(85n+22)(n-2)=0,
舍去不符合題意的根,得n=2,
所以,
所以2017年的出口值占進(jìn)出口總值的百分比為=70%,
故答案為:70%.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=mx2﹣6mx+9m+1(m≠0).
(1)求拋物線的頂點(diǎn)坐標(biāo);
(2)若拋物線與x軸的兩個(gè)交點(diǎn)分別為A和B點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),且AB=4,求m的值.
(3)已知四個(gè)點(diǎn)C(2,2)、D(2,0)、E(5,﹣2)、F(5,6),若拋物線與線段CD和線段EF都沒有公共點(diǎn),請直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家的門框上裝有一把防盜門鎖(如圖1),其平面結(jié)構(gòu)圖如圖2所示,鎖身可以看成由兩條等弧,和矩形組成的,的圓心是倒鎖按鈕點(diǎn).已知的弓形高,,.當(dāng)鎖柄繞著點(diǎn)順時(shí)針旋轉(zhuǎn)至位置時(shí),門鎖打開,此時(shí)直線與所在的圓相切,且,.
(1)求所在圓的半徑;
(2)求線段的長度.(,結(jié)果精確到)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,A、C分別在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(4,2),直線交AB,BC分別于點(diǎn)M,N,反比例函數(shù)的圖象經(jīng)過點(diǎn)M,N.
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)P在y軸上,且△OPM的面積與四邊形BMON的面積相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的頂點(diǎn)為,拋物線與軸交于點(diǎn),與軸交于、兩點(diǎn).點(diǎn)是拋物線上的一個(gè)動(dòng)點(diǎn).
(1)求此拋物線的解析式;
(2)求、兩點(diǎn)坐標(biāo)及的面積;
(3)若點(diǎn)在軸下方的拋物線上.滿足,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,AD=BD,E為AB的中點(diǎn),F為CD上一點(diǎn),連接EF交BD于G.
(1)如圖1,若DF=DG=2,AB=8,求EF的長;
(2)如圖2,∠ADB=90°,點(diǎn)P為平行四邊形ABCD外部一點(diǎn),且AP=AD,連接BP、DP、EP,DP交EF于點(diǎn)Q,若BP⊥DP,EF⊥EP,求證:DQ=PQ.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)P是弦AC上一動(dòng)點(diǎn)(不與A,C重合),過點(diǎn)P作PE⊥AB,垂足為E,射線EP交于點(diǎn)F,交過點(diǎn)C的切線于點(diǎn)D.
(1)求證:DC=DP;
(2)若∠CAB=30°,當(dāng)F是的中點(diǎn)時(shí),判斷以A,O,C,F為頂點(diǎn)的四邊形是什么特殊四邊形?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ABC=90°
(1)如圖1,分別過A、C兩點(diǎn)作經(jīng)過點(diǎn)B的直線的垂線,垂足分別為點(diǎn)M,N,求證:△ABM∽△BCN;
(2)如圖2,P是BC邊上一點(diǎn),∠BAP=∠C,tan∠PAC=,BP=2cm,求CP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=x+m的圖象與反比例函數(shù)y=的圖象交于A,B兩點(diǎn),且與x軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(2,1).
(1)求m及k的值;
(2)求點(diǎn)C的坐標(biāo),并結(jié)合圖象寫出不等式組0<x+m≤的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com