【題目】推理填空:

如圖,EFAD,∠1=∠2,∠BAC70°.將求∠AGD的過程填寫完整.

因?yàn)?/span>EFAD

所以∠2   .(   

又因?yàn)椤?/span>1=∠2,

所以∠1=∠3.(   

所以AB   .(   

所以∠BAC+   180°(   

又因?yàn)椤?/span>BAC70°,

所以∠AGD   

【答案】3,兩直線平行,同位角相等,等量代換,DG,內(nèi)錯(cuò)角相等,兩直線平行,∠AGD,兩直線平行,同旁內(nèi)角互補(bǔ),110°

【解析】

根據(jù)平行線的性質(zhì)推出∠1=∠2=∠3,推出ABDG,根據(jù)平行線的性質(zhì)得出∠BAC+DGA180°,代入求出即可.

解:∵EFAD,

∴∠2=∠3(兩直線平行,同位角相等),

∵∠1=∠2,

∴∠1=∠3(等量代換),

ABDG(內(nèi)錯(cuò)角相等,兩直線平行),

∴∠BAC+AGD180°(兩直線平行,同旁內(nèi)角互補(bǔ)),

∵∠BAC70°,

∴∠AGD110°,

故答案為:∠3,兩直線平行,同位角相等,等量代換,DG,內(nèi)錯(cuò)角相等,兩直線平行,∠AGD,兩直線平行,同旁內(nèi)角互補(bǔ),110°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】仔細(xì)觀察圖形,認(rèn)真分析下列各式,然后解答問題.

OA=()2+1=2,S1;

OA=()2+1=3,S2;

OA=()2+1=4,S3

求:(1)請用含有n(n是正整數(shù))的等式表示上述變化規(guī)律;

(2)推算出OA10的長;

(3)求出S+S+S+…+S的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若x1 , x2(x1<x2)是方程(x﹣a)(x﹣b)=﹣1(a<b)的兩根,則實(shí)數(shù)x1 , x2 , a,b的大小關(guān)系是( )
A.a<x1<x2<b
B.x1<a<x2<b
C.x1<a<b<x2
D.x1<x2<a<b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在我市“精準(zhǔn)扶貧”工作中,甲、乙兩個(gè)工程隊(duì)先后接力為扶貧村莊修建一條210米長的公路,甲隊(duì)每天修建15米,乙隊(duì)每天修建25米,一共用10天完成.

根據(jù)題意,小紅和小芳同學(xué)分別列出了下面尚不完整的方程組:

小紅:小芳:

1)請你分別寫出小紅和小芳所列方程組中未知數(shù)x,y表示的意義:

小紅:x表示______,y表示______

小芳:x表示______,y表示______

2)在題中“( 。眱(nèi)把小紅和小芳所列方程組補(bǔ)充完整;

3)甲工程隊(duì)一共修建了______天,乙工程隊(duì)一共修建了______米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1=∠2,要使ABDACD,需從下列條件中增加一個(gè),錯(cuò)誤的選法是(

A.ADB=∠ADCB.B=∠CC.ABACD.DBDC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一件工藝品的進(jìn)價(jià)為100元,標(biāo)價(jià)135元出售,每天可售出100件,根據(jù)銷售統(tǒng)計(jì),一件工藝品每降價(jià)1元,則每天可多售出4件,要使每天獲得的利潤最大,則每件需降價(jià)( )
A.3.6 元
B.5 元
C.10 元
D.12 元

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售某種玩具,進(jìn)貨價(jià)為20元.根據(jù)市場調(diào)查:在一段時(shí)間內(nèi),銷售單價(jià)是30元時(shí),銷售量是400件,而銷售單價(jià)每上漲1元,就會少售出10件玩具,超市要完成不少于300件的銷售任務(wù),又要獲得最大利潤,則銷售單價(jià)應(yīng)定為元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

1)小亮遇到這樣問題:如圖1,已知ABCD,EOF是直線AB、CD間的一條折線.判斷∠O、∠BEO、∠DFO三個(gè)角之間的數(shù)量關(guān)系.小亮通過思考發(fā)現(xiàn):過點(diǎn)OOPAB,通過構(gòu)造內(nèi)錯(cuò)角,可使問題得到解決.

請回答:∠O、∠BEO、∠DFO三個(gè)角之間的數(shù)量關(guān)系是 

參考小亮思考問題的方法,解決問題:

2)如圖2,將△ABC沿BA方向平移到△DEFB、D、E共線),∠B50°,ACDF相交于點(diǎn)G,GP、EP分別平分∠CGF、∠DEF相交于點(diǎn)P,求∠P的度數(shù);

3)如圖3,直線mn,點(diǎn)B、F在直線m上,點(diǎn)E、C在直線n上,連接FE并延長至點(diǎn)A,連接BA、BCCA,做∠CBF和∠CEF的平分線交于點(diǎn)M,若∠ADCα,則∠M  (直接用含α的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線 軸、 軸分別相交于點(diǎn)A(-1,0)和B(0,3),其頂點(diǎn)為D.

(1)求這條拋物線的解析式;
(2)若拋物線與 軸的另一個(gè)交點(diǎn)為E,求△ODE的面積;拋物線的對稱軸上是否存在點(diǎn)P使得△PAB的周長最短.若存在請求出點(diǎn)P的坐標(biāo),若不存在說明理由.

查看答案和解析>>

同步練習(xí)冊答案