【題目】如圖,,分別以點AB為圓心,AB長為半徑畫圓弧,兩圓弧交于點C,再以點C為圓心,以AB長為半徑畫圓弧交AC的延長線于點D,連結(jié)BD、BC,則的面積是___________

【答案】

【解析】

利用作法得到CACBAB,CDAB,則可證得△ABD為直角三角形,再利用勾股定理可求得BD的長,進而可計算出ABD的面積.

解:由作法得CACBABCDAB,

AB4,

CACBCDAB4,

CACB,CBCD

∴∠CAB=∠CBA,∠CDB=∠CBD,

∵∠A+∠DBA+∠D180°,

∴∠CAB+∠CBA+∠CDB+∠CBD180°,

2(CBA+∠CBD)180°,

∴∠ABD=∠CBA+∠CBD90°,

ADCACD8,

∴在Rt△ABD中,,

SABD,

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】12分)如圖1,點O是正方形ABCD兩對角線的交點,分別延長OD到點G,OC到點E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE

1)求證:DE⊥AG

2)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉(zhuǎn)α角(α360°)得到正方形OE′F′G′,如圖2

在旋轉(zhuǎn)過程中,當(dāng)∠OAG′是直角時,求α的度數(shù);

若正方形ABCD的邊長為1,在旋轉(zhuǎn)過程中,求AF′長的最大值和此時α的度數(shù),直接寫出結(jié)果不必說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一次函數(shù)ymxn與反比例函數(shù)y同時經(jīng)過點P(x,y)則稱二次函數(shù)ymx2nxk為一次函數(shù)與反比例函數(shù)的“共享函數(shù)”,稱點P為共享點.

1)判斷y2x1y是否存在“共享函數(shù)”,如果存在,請求出“共享點”.如果不存在,請說明理由;

2)已知:整數(shù)m,n,t滿足條件t<n<8m,并且一次函數(shù)y=(1+n)x+2m+2與反比例函數(shù)y存在“共享函數(shù)”y=(m+t)x2+(10mt)x2020,求m的值.

3)若一次函數(shù)yxm和反比例函數(shù)y在自變量x的值滿足mxm6的情況下,其“共享函數(shù)”的最小值為3,求其“共享函數(shù)”的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某數(shù)學(xué)活動小組為測量學(xué)校旗桿AB的高度,沿旗桿正前方米處的點C出發(fā),沿斜面坡度 的斜坡CD前進4米到達點D,在點D處安置測角儀,測得旗桿頂部A的仰角為37°,量得儀器的高DE為1.5米.已知A、B、C、D、E在同一平面內(nèi),ABBC,AB//DE.求旗桿AB的高度.(參考數(shù)據(jù):sin37°,cos37°,tan37°.計算結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB為⊙O的直徑,C為⊙O上一點,BG與⊙O相切于點B,交AC的延長線于點D(點D在線段BG上),AC = 8,tanBDC =

1)求⊙O的直徑;

(2)當(dāng)DG=時,過G,交BA的延長線于點E,說明EG與⊙O相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛貨車從甲地出發(fā)以50 km/h的速度勻速駛往乙地,行駛1 h后,一輛轎車從乙地出發(fā)沿同一條路勻速駛往甲地轎車行駛0.8 h后兩車相遇圖中折線ABC表示兩車之間的距離ykm)與貨車行駛時間xh)的函數(shù)關(guān)系

1)甲乙兩地之間的距離是__________ km,轎車的速度是_________ km/h;

2)求線段BC所表示的函數(shù)表達式

3)在圖中畫出貨車與轎車相遇后的ykm)與xh)的函數(shù)圖像

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形都是由大小相同的小正方形按一定規(guī)律組成的,其中第1個圖形的周長為4,第2個圖形的周長為10,第3個圖形的周長為18,,按此規(guī)律排列,回答下列問題:

(1)5個圖形的周長為 ;

(2)個圖形的周長為

(3)若第個圖形的周長為180,則

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校計劃購買一批學(xué)習(xí)筆記本,已知1本甲種筆記本和3本乙種筆記本共需26元;3本甲種筆記本和2本乙種筆記本共需29元.

1)求購買一本甲種筆記本和一本乙種筆記本各需多少元;

2)學(xué)校計劃購進這兩種筆記本共70本,并且甲種筆記本的數(shù)量不超過乙種筆記本數(shù)量的2倍,若設(shè)學(xué)校計劃購進甲種比價本x本.

①填寫下表:

甲種筆記本數(shù)量

10

   

乙種筆記本數(shù)量

   

30

所需總費用

   

   

②寫出購買這兩種筆記本所需要費用y(元)關(guān)于x的函數(shù)關(guān)系式;請設(shè)計出最省錢的購買方案,并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某單位要印刷“市民文明出行,遵守交通安全”的宣傳材料.甲印刷廠提出:每份材料收2元印刷費,另收1000元的制版費;乙印刷廠提出:每份材料收3元印刷費,不收制版費.

1)分別寫出兩個印刷廠的收費,(元)與印制數(shù)量(份)之間的關(guān)系式(不用寫出自變量的取值范圍);

2)在同一坐標(biāo)系內(nèi)畫出它們的圖象,并求出當(dāng)印制多少份宣傳材料,兩個印刷廠的印制費用相同?此時費用為多少?

3)結(jié)合圖象回答:在印刷品數(shù)量相同的情況下選哪家印刷廠印制省錢?

查看答案和解析>>

同步練習(xí)冊答案