【題目】如圖,E是ABCD的BC邊的中點,BD與AE相交于F,則△ABF與四邊形ECDF的面積之比等于_____.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中(如圖),已知經過點A(﹣3,0)的拋物線y=ax2+2ax﹣3與y軸交于點C,點B與點A關于該拋物線的對稱軸對稱,D為該拋物線的頂點.
(1)直接寫出該拋物線的對稱軸以及點B的坐標、點C的坐標、點D的坐標;
(2)聯(lián)結AD、DC、CB,求四邊形ABCD的面積;
(3)聯(lián)結AC.如果點E在該拋物線上,過點E作x軸的垂線,垂足為H,線段EH交線段AC于點F.當EF=2FH時,求點E的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AC=15,sin∠BAC=.點D在邊AB上(不與點A、B重合),以AD為半徑的⊙A與射線AC相交于點E,射線DE與射線BC相交于點F,射線AF與⊙A交于點G.
(1)如圖,設AD=x,用x的代數(shù)式表示DE的長;
(2)如果點E是的中點,求∠DFA的余切值;
(3)如果△AFD為直角三角形,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線 經過點,與軸相交于,兩點,
(1)拋物線的函數(shù)表達式;
(2)點在拋物線的對稱軸上,且位于軸的上方,將沿沿直線翻折得到,若點恰好落在拋物線的對稱軸上,求點和點的坐標;
(3)設是拋物線上位于對稱軸右側的一點,點在拋物線的對稱軸上,當為等邊三角形時,求直線的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD=BC,∠B=∠D,AD不平行于BC,過點C作CE∥AD交△ABC的外接圓O于點E,連接AE.
(1)求證:四邊形AECD為平行四邊形;
(2)連接CO,求證:CO平分∠BCE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】E-learning即為在線學習,是一種新型的學習方式.某網站提供了A、B兩種在線學習的收費方式.A種:在線學習10小時(包括10小時)以內,收取費用5元,超過10小時時,在收取5元的基礎上,超過部分每小時收費0.6元(不足1小時按1小時計);B種:每月的收費金額(元)與在線學習時間是(時)之間的函數(shù)關系如圖所示.
(1)按照B種方式收費,當時,求關于的函數(shù)關系式.
(2)如果小明三月份在這個網站在線學習,他按照A種方式支付了20元,那么在線學習的時間最多是多少小時?如果該月他按照B 種方式付費,那么他需要多付多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,骰子有六個面并分別標有數(shù)1,2,3,4,5,6,如圖2,正六邊形頂點處各有一個圈,跳圈游戲的規(guī)則為:游戲者擲一次骰子,骰子向上的一面上的數(shù)字是幾,就沿正六邊形的邊順時針方向連續(xù)跳幾個邊長.
如:若從圈起跳,第一次擲得3,就順時針連續(xù)跳3個邊長,落到圈;若第二次擲得2,就從開始順時針連續(xù)跳2個邊長,落到圈;……設游戲者從圈起跳.
(1)小明隨機擲一次骰子,求落回到圈的概率;
(2)小亮隨機擲兩次骰子,用列表法或畫樹狀圖法求最后落回到圈的概率,并指出他與小明落回到圈的可能性一樣嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關于x的方程(2m+1)x2+4mx+2m﹣3=0有兩個不相等的實數(shù)根.
(1)求m的取值范圍;
(2)是否存在實數(shù)m,使方程的兩個實數(shù)根的倒數(shù)之和等于﹣1?若存在,求出m的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AC切⊙O于點A,連結BC交O于點D,E是⊙O上一點,且與點D在AB異側,連結DE
(1)求證:∠C=∠BED;
(2)若∠C=50°,AB=2,則的長為(結果保留π)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com