【題目】設(shè)有理數(shù)a、b、c滿(mǎn)足a>b>c(ac<0),且|c|<|b|<|a|,則|x﹣|+|x﹣|+|x+|的最小值是( 。
A.B.C.D.
【答案】C
【解析】
根據(jù)ac<0可知a,c異號(hào),再根據(jù)a>b>c,以及|c|<|b|<|a|,即可確定a,﹣a,b,﹣b,c,﹣c在數(shù)軸上的位置,而|x﹣|+|x﹣|+|x+|表示到,,﹣三點(diǎn)的距離的和,根據(jù)數(shù)軸即可確定.
解:∵ac<0,
∴a,c異號(hào),
∵a>b>c,
∴a>0,c<0,
又∵|c|<|b|<|a|,
∴﹣a<﹣b<c<0<﹣c<b<a,
又∵|x﹣|+|x﹣|+|x+|表示到,,﹣,﹣三點(diǎn)的距離的和,
當(dāng)x在時(shí)距離最小,
即|x﹣|+|x﹣|+|x+|最小,最小值是與﹣之間的距離,即 .
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:
善于思考的小聰在解方程組時(shí),發(fā)現(xiàn)方程組①和②之間存在一定關(guān)系,他的解法如下:
解:將方程②變形為:2x-3y-2y=5③,
把方程①代入方程③得:3-2y=5,
解得y=-1.
把y=-1代入方程①得x=0.
∴原方程組的解為.
小聰?shù)倪@種解法叫“整體換元”法.請(qǐng)用“整體換元”法完成下列問(wèn)題:
(1)解方程組:;
①把方程①代入方程②,則方程②變?yōu)?/span>______;
②原方程組的解為______.
(2)解方程組:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠BOC=9°,點(diǎn)A在OB上,且OA=1,按下列要求畫(huà)圖:以A為圓心,1為半徑向右畫(huà)弧交OC于點(diǎn)A1,得第1條線(xiàn)段AA1;再以A1為圓心,1為半徑向右畫(huà)弧交OB于點(diǎn)A2,得第2條線(xiàn)段A1A2;再以A2為圓心,1為半徑向右畫(huà)弧交OC于點(diǎn)A3,得第3條線(xiàn)段A2A3…這樣畫(huà)下去,直到得第n條線(xiàn)段,之后就不能再畫(huà)出符合要求的線(xiàn)段了,則n=( 。
A. 10B. 9C. 8D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A1的坐標(biāo)為(1,2),以點(diǎn)O為圓心,以OA1長(zhǎng)為半徑畫(huà)弧,交直線(xiàn)y=x于點(diǎn)B1.過(guò)B1點(diǎn)作B1A2∥y軸,交直線(xiàn)y=2x于點(diǎn)A2,以O為圓心,以OA2長(zhǎng)為半徑畫(huà)弧,交直線(xiàn)y=x于點(diǎn)B2;過(guò)點(diǎn)B2作B2A3∥y軸,交直線(xiàn)y=2x于點(diǎn)A3,以點(diǎn)O為圓心,以OA3長(zhǎng)為半徑畫(huà)弧,交直線(xiàn)y=x于點(diǎn)B3;過(guò)B3點(diǎn)作B3A4∥y軸,交直線(xiàn)y=2x于點(diǎn)A4,以點(diǎn)O為圓心,以OA4長(zhǎng)為半徑畫(huà)弧,交直線(xiàn)y=x于點(diǎn)B4,…按照如此規(guī)律進(jìn)行下去,點(diǎn)B2018的坐標(biāo)為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在四邊形BCDE中,BC⊥CD,DE⊥CD,AB⊥AE,垂足分別為C,D,A,BC≠AC,點(diǎn)M,N,F(xiàn)分別為AB,AE,BE的中點(diǎn),連接MN,MF,NF.
(1)如圖②,當(dāng)BC=4,DE=5,tan∠FMN=1時(shí),求的值;
(2)若tan∠FMN=,BC=4,則可求出圖中哪些線(xiàn)段的長(zhǎng)?寫(xiě)出解答過(guò)程;
(3)連接CM,DN,CF,DF.試證明△FMC與△DNF全等;
(4)在(3)的條件下,圖中還有哪些其它的全等三角形?請(qǐng)直接寫(xiě)出.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市創(chuàng)建“綠色發(fā)展模范城市”,針對(duì)境內(nèi)長(zhǎng)江段兩種主要污染源:生活污水和沿江工廠(chǎng)污染物排放,分別用“生活污水集中處理”(下稱(chēng)甲方案)和“沿江工廠(chǎng)轉(zhuǎn)型升級(jí)”(下稱(chēng)乙方案)進(jìn)行治理,若江水污染指數(shù)記為Q,沿江工廠(chǎng)用乙方案進(jìn)行一次性治理(當(dāng)年完工),從當(dāng)年開(kāi)始,所治理的每家工廠(chǎng)一年降低的Q值都以平均值n計(jì)算.第一年有40家工廠(chǎng)用乙方案治理,共使Q值降低了12.經(jīng)過(guò)三年治理,境內(nèi)長(zhǎng)江水質(zhì)明顯改善.
(1)求n的值;
(2)從第二年起,每年用乙方案新治理的工廠(chǎng)數(shù)量比上一年都增加相同的百分?jǐn)?shù)m,三年來(lái)用乙方案治理的工廠(chǎng)數(shù)量共190家,求m的值,并計(jì)算第二年用乙方案新治理的工廠(chǎng)數(shù)量;
(3)該市生活污水用甲方案治理,從第二年起,每年因此降低的Q值比上一年都增加個(gè)相同的數(shù)值a.在(2)的情況下,第二年,用乙方案所治理的工廠(chǎng)合計(jì)降低的Q值與當(dāng)年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,AE,CF分別是∠BAD和∠BCD的平分線(xiàn),添加一個(gè)條件,仍無(wú)法判斷四邊形AECF為菱形的是( )
A. AE=AFB. EF⊥ACC. ∠B=60°D. AC是∠EAF的平分線(xiàn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將123456719101121314……依次寫(xiě)到第2020個(gè)數(shù)字,組成一個(gè)2020位數(shù),那么此數(shù)除以9的余數(shù)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)l1:y=x-3與x軸,y軸分別交于點(diǎn)A和點(diǎn)B.
(1)求點(diǎn)A和點(diǎn)B的坐標(biāo);
(2)將直線(xiàn)l1向上平移6個(gè)單位后得到直線(xiàn)l2,求直線(xiàn)l2的函數(shù)解析式;
(3)設(shè)直線(xiàn)l2與x軸的交點(diǎn)為M,則△MAB的面積是______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com