【題目】如圖,已知:EAOB的平分線上一點,ECOBEDOA,C、D是垂足,連接CD,交OE于點F

(1)求證:OD=OC;

(2)若AOB=60°,求證:OE=4EF

【答案】(1)詳見解析;(2)詳見解析.

【解析】

(1)利用角平分線定理得到ED=EC,再由斜邊為公共邊,利用HL得到直角三角形ODE與直角三角形OCE全等,利用全等三角形的對應(yīng)邊相等即可得證;
(2)由OE為角平分線,且∠AOB=60°,得到∠DOE=EDF=30°,在直角三角形ODE中,利用30度角所對的直角邊等于斜邊的一半得到OE=2DE,在直角三角形DEF中,利用30度角所對的直角邊等于斜邊的一半得到DE=2EF,等量代換即可得證.

證明:(1)∵EAOB的平分線上一點,ECOBEDOA,

ED=EC,

RtODERtOCE中,

,

RtODERtOCEHL),

OD=OC;

2)∵∠AOB=60°,OE平分AOB,

∴∠DOE=COE=30°

∴∠DEO=60°,∠EDF=30°

RtODE中,DOE=30°,

OE=2DE

RtDEF中,EDF=30°,

DE=2EF,

OE=4EF

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綿陽農(nóng)科所為了考察某種水稻穗長的分布情況,在一塊試驗田里隨機抽取了50個谷穗作為樣本,量得它們的長度(單位:cm).對樣本數(shù)據(jù)適當(dāng)分組后,列出了如下頻數(shù)分布表:

穗長

4.5≤x5

5≤x5.5

5.5≤x6

6≤x6.5

6.5≤x7

7≤x7.5

頻數(shù)

4

8

12

13

10

3

1)在圖1、圖2中分別出頻數(shù)分布直方圖和頻數(shù)折線圖;

2)請你對這塊試驗田里的水稻穗長進行分析;并計算出這塊試驗田里穗長在5.5≤x7范圍內(nèi)的谷穗所占的百分比.

1 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為2 的正方形ABCD中,點E是CD邊的中點,延長BC至點F,使CF=CE,連接BE,DF.將△BEC繞點C按順時針方向旋轉(zhuǎn).當(dāng)點E恰好落在DF上的點H處時,連接AG、DG、BG,則AG的長是.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市計劃購進一批甲、乙兩種玩具,已知5件甲種玩具的進價與3件乙種玩具的進價的和為231元,2件甲種玩具的進價與3件乙種玩具的進價的和為141元.

(1)求每件甲種、乙種玩具的進價分別是多少元;

(2)近期批發(fā)商有優(yōu)惠活動,如圖所示,如果超市決定在甲、乙兩種玩具中選購其中一種,且數(shù)量超過20件,請你幫助超市判斷購進哪種玩具更省錢.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖所示,∠5=∠CDA=∠ABC,∠1=∠4,∠2=∠3,∠BAD+∠CDA=180°,填空:

∵∠5=∠CDA(已知),∴________________(內(nèi)錯角相等,兩直線平行).

∵∠5=∠ABC(已知),∴________________(同位角相等,兩直線平行).

∵∠2=∠3(已知),∴________________(內(nèi)錯角相等,兩直線平行).

∵∠BAD+∠CDA=180°(已知),

________________(同旁內(nèi)角互補,兩直線平行).

∵∠5=∠CDA(已知),

又∠5與∠BCD互補,

∠CDA與________互補,

∴∠BCD=∠6(等角的補角相等),

________________(同位角相等,兩直線平行).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(探索新知)

如圖1,點C在線段AB上,圖中共有3條線段:ABACBC,若其中有一條線段的長度是另一條線段長度的兩倍,則稱點C是線段AB的“二倍點”.

(1)一條線段的中點   這條線段的“二倍點”;(填“是”或“不是”)

(深入研究)

如圖2,若線段AB=20cm,點M從點B的位置開始,以每秒2cm的速度向點A運動,當(dāng)點M到達點A時停止運動,運動的時間為t秒.

(2)問t為何值時,點M是線段AB的“二倍點”;

(3)同時點N從點A的位置開始,以每秒1cm的速度向點B運動,并與點M同時停止.請直接寫出點M是線段AN的“二倍點”時t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

(1)a3(-b32+(-2ab23

(2)(a-b)10÷(b-a)3÷(b-a)3;

(3)-22+(--2-(π-5)0-|-4|;

(4)(x+y-3)(x-y+3);

(5)3x2y(2x-3y)-(2xy+3y2)(3x2-3y);

(6)(x-2y)(x+2y)-(x-2y)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】湖州素有魚米之鄉(xiāng)之稱,某水產(chǎn)養(yǎng)殖大戶為了更好地發(fā)揮技術(shù)優(yōu)勢,一次性收購了 淡水魚,計劃養(yǎng)殖一段時間后再出售.已知每天放養(yǎng)的費用相同,放養(yǎng) 天的總成本為 萬元;放養(yǎng) 天的總成本為 萬元(總成本=放養(yǎng)總費用+收購成本).
(1)設(shè)每天的放養(yǎng)費用是 萬元,收購成本為 萬元,求 的值;
(2)設(shè)這批淡水魚放養(yǎng) 天后的質(zhì)量為 ),銷售單價為 元/ .根據(jù)以往經(jīng)驗可知: 的函數(shù)關(guān)系為 ; 的函數(shù)關(guān)系如圖所示.

①分別求出當(dāng) 時, 的函數(shù)關(guān)系式;
②設(shè)將這批淡水魚放養(yǎng) 天后一次性出售所得利潤為 元,求當(dāng) 為何值時, 最大?并求出最大值.(利潤=銷售總額-總成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知DE∥BC, AB∥CDEAB的中點,∠A=∠B.下列結(jié)論:①CD=AE;②AC=DE;③AC平分∠BCD④O點是DE的中點;⑤AC=AB.其中正確的是( 。

A. ①②④ B. ①③⑤ C. ②③④ D. ②④⑤

查看答案和解析>>

同步練習(xí)冊答案