【題目】如圖,某數(shù)學興趣小組為測量一棵古樹BH和教學樓的高,先在點處用高1.5米的測角儀測得古樹頂端點的仰角為,此時教學樓頂端點恰好在視線上,再向前走7米到達點處,又測得教學樓頂端點的仰角為,點、、點在同一水平線上.
(1)計算古樹的高度;
(2)計算教學樓的高度.(結(jié)果精確到0.1米,參考數(shù)據(jù):,).
【答案】(1)8.5米;(2)18.0米
【解析】
(1)先根據(jù)題意得出DE=AB=7米,AD=BE=1.5米,在Rt△DEH中,可求出HE的長度,進而可計算古樹的高度;
(2)作HJ⊥CG于G,設HJ=GJ=BC=x,在Rt△EFG中,利用特殊角的三角函數(shù)值求出x的值,進而求出GF,最后利用 CG=CF+FG即可得出答案.
解:(1)由題意:四邊形ABED是矩形,可得DE=AB=7米,AD=BE=1.5米,
在Rt△DEH中,
∵∠EDH=45°,
∴HE=DE=7米.
∴BH=EH+BE=8.5米.
答:古樹BH的高度為8.5米.
(2)作HJ⊥CG于G.則△HJG是等腰直角三角形,四邊形BCJH是矩形,設HJ=GJ=BC=x.
在Rt△EFG中,tan60°=,
∴,
∴GF=≈16.45
∴CG=CF+FG=1.5+16.45≈17.95≈18.0米.
答:教學樓CG的高度為18.0米.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知Rt△ABC,∠BAC=90°,BC=5,AC=2,以A為圓心、AB為半徑畫圓,與邊BC交于另一點D.
(1)求BD的長;
(2)連接AD,求∠DAC的正弦值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】新春佳節(jié),電子鞭炮因其安全、無污染開始走俏.某商店經(jīng)銷一種電子鞭炮,已知這種電子鞭炮的成本價為每盒80元,市場調(diào)查發(fā)現(xiàn),該種電子鞭炮每天的銷售量y(盒)與銷售單價x(元)有如下關(guān)系:y=﹣2x+320(80≤x≤160).設這種電子鞭炮每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式;
(2)該種電子鞭炮銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)該商店銷售這種電子鞭炮要想每天獲得2400元的銷售利潤,又想買得快.那么銷售單價應定為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是一張周長為18cm的三角形紙片,BC=5cm,⊙O是它的內(nèi)切圓,小明用剪刀在⊙O的右側(cè)沿著與⊙O相切的任意一條直線剪下△AMN,則剪下的三角形的周長為( )
A.B.C.D.隨直線的變化而變化
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線,且拋物線經(jīng)過B(1,0),C(0,3)兩點,與x軸交于點A.
(1)求拋物線的解析式;
(2)如圖1,在拋物線的對稱軸直線上找一點M,使點M到點B的距離與到點C的距離之和最小,求出點M的坐標;
(3)如圖2,點Q為直線AC上方拋物線上一點,若∠CBQ=45°,請求出點Q坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,連接BD,且BD=CD,過點A作AM⊥BD于點M,過點D作DN⊥AB于點N,DN=3,在DB的延長線上取一點P,滿足∠ABD=∠MAP+∠PAB,則AP=( 。
A.4.5B.5.5C.6D.6.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,四邊形ABCO是菱形,點C的坐標為(﹣3,4),點A在x軸的正半軸上,O為坐標原點,連接OB,拋物線y=ax2+bx+c經(jīng)過C、O、A三點.
(1)直接寫出這條拋物線的解析式;
(2)如圖1,對于所求拋物線對稱軸上的一點E,設△EBO的面積為S1,菱形ABCO的面積為S2,當S1≤S2時,求點E的縱坐標n的取值范圍;
(3)如圖2,D(0,﹣)為y軸上一點,連接AD,動點P從點O出發(fā),以個單位/秒的速度沿OB方向運動,1秒后,動點Q從O出發(fā),以2個單位/秒的速度沿折線O﹣A﹣B方向運動,設點P運動時間為t秒(0<t≤6),是否存在實數(shù)t,使得以P、Q、B為頂點的三角形與△ADO相似?若存在,求出相應的t值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,從一塊圓形紙片上剪出一個圓心角為90°的扇形ABC,使點A、B、C在圓周上,將剪下的扇形作為一個圓錐側(cè)面,如果圓錐的高為,則這塊圓形紙片的直徑為( )
A. 12cm B. 20cm C. 24cm D. 28cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=4.
(1)填空:拋物線的頂點坐標為 (用含m的代數(shù)式表示);
(2)求△ABC的面積(用含a的代數(shù)式表示);
(3)若△ABC的面積為2,當2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com