【題目】如圖,在生產(chǎn)圖紙上通常用Φ300表示軸的加工要求,這里Φ300表示直徑是300 mm,+0.2和-0.5是指直徑在(300-0.5)mm到(300+0.2)mm之間的產(chǎn)品都屬于合格產(chǎn)品.現(xiàn)加工一批軸,尺寸要求是Φ45,請(qǐng)檢驗(yàn)直徑為44.97 mm和45.04 mm的兩根軸是不是合格產(chǎn)品.

【答案】徑為44.97 mm的軸合格,直徑為45.04 mm的軸不合格.

【解析】

根據(jù)題意可得出合格的范圍,從而可判斷出直徑是44.97mm45.04mm的兩根軸是否合格.

這批軸的尺寸要求是在(45-0.04)mm(45+0.03)mm之間,

即尺寸在44.96 mm45.03 mm之間的產(chǎn)品都為合格品,

所以直徑為44.97 mm的軸合格,

直徑為45.04 mm的軸不合格.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,將一副三角板的兩個(gè)銳角頂點(diǎn)放到一塊,∠AOB=45°,COD=30°,OM,ON分別是∠AOC,BOD的平分線.

(1)當(dāng)∠COD繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)至射線OBOC重合時(shí)(如圖②),則∠MON的大小為________;

(2)如圖③,在(1)的條件下,繼續(xù)繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)∠COD,當(dāng)∠BOC=10°時(shí),求∠MON的大小,寫出解答過(guò)程;

(3)在∠COD繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)過(guò)程中,∠MON=________°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線a,b相交.

(1)已知∠1=40°,求∠2,∠3,∠4;

(2)已知∠2+∠4=280°,求各角;

(3)已知∠1∶∠2=2∶7,求各角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校八年級(jí)學(xué)生開(kāi)展踢毽子比賽活動(dòng),每班派5名學(xué)生參加.按團(tuán)體總分多少排列名次.在規(guī)定時(shí)間每人踢100個(gè)以上(含100個(gè))為優(yōu)秀,下表是成績(jī)最好的甲班和乙班5名學(xué)生的比賽數(shù)據(jù)(單位:個(gè)

請(qǐng)你回答下列問(wèn)題:

1)填寫表格;

2)根據(jù)以上信息,請(qǐng)你回答下列問(wèn)題:

從平均數(shù)、眾數(shù)相結(jié)合的角度分析,應(yīng)該把冠軍獎(jiǎng)狀發(fā)給哪一個(gè)班級(jí)?

②從優(yōu)秀率的角度分析,應(yīng)該把冠軍獎(jiǎng)狀發(fā)給哪一個(gè)班級(jí)?

3)如果兩個(gè)班各選兩名同學(xué)參加市踢毽子的比賽,你認(rèn)為哪個(gè)班級(jí)團(tuán)體實(shí)力更強(qiáng)?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合題
(1)用適當(dāng)?shù)姆椒ń夥匠蹋?
①(x﹣2)2=2x﹣4
②x2﹣2x﹣8=0.
(2)先化簡(jiǎn),再求值: ÷( ﹣a+1),其中a是方程x2﹣x=6的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(0,﹣3),頂點(diǎn)坐標(biāo)為(﹣1,﹣4),
(1)求這個(gè)二次函數(shù)的解析式;
(2)求圖象與x軸交點(diǎn)A、B兩點(diǎn)的坐標(biāo);
(3)圖象與y軸交點(diǎn)為點(diǎn)C,求三角形ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=(k為常數(shù)).

(1)k為何值時(shí),該函數(shù)是正比例函數(shù);

(2)k為何值時(shí)正比例函數(shù)過(guò)第一、三象限寫出正比例函數(shù)解析式;

(3)k為何值時(shí)正比例函數(shù)yx的增大而減小,寫出正比例函數(shù)的解析式

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)M為直線AB上一動(dòng)點(diǎn), 都是等邊三角形,連接BN

求證:

分別寫出點(diǎn)M在如圖2和圖3所示位置時(shí),線段AB、BM、BN三者之間的數(shù)量關(guān)系不需證明;

如圖4,當(dāng)時(shí),證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,BC⊥AB于點(diǎn)B,連接OC交⊙O于點(diǎn)E,弦AD∥OC,弦DF⊥AB于點(diǎn)G.

(1)求證:點(diǎn)E是 的中點(diǎn);
(2)求證:CD是⊙O的切線;
(3)若AD=12,⊙O的半徑為10,求弦DF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案