【題目】如圖,在正方形ABCD中,點M是邊BC上的一點(不與B、C重合),點NCD邊的延長線上,且滿足∠MAN=90°,聯(lián)結(jié)MN、AC,N與邊AD交于點E.

(1)求證:AM=AN;

(2)如果∠CAD=2NAD,求證:AM2=ACAE.

【答案】(1)證明見解析;(2)證明見解析.

【解析】分析:1)根據(jù)正方形的性質(zhì)、全等三角形的判定定理證明△BAM≌△DAN,根據(jù)全等三角形的性質(zhì)證明

2)證明△AMC∽△AEN,根據(jù)相似三角形的性質(zhì)證明.

詳解:(1∵四邊形ABCD是正方形,AB=AD,BAD=90°,

MAN=90°,∴∠BAM=DAN

BAM和△DAN,,

∴△BAM≌△DAN,AM=AN

2)四邊形ABCD是正方形,∴∠CAD=45°.

∵∠CAD=2NADBAM=DAN,

∴∠MAC=45°,∴∠MAC=EAN,

又∠ACM=ANE=45°,∴△AMC∽△AEN,

=,ANAM=ACAE,AM2=ACAE

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】火車勻速通過隧道時,火車在隧道內(nèi)的長度(米)與火車行駛時間(秒)之間的關系用圖象描述如圖所示,有下列結(jié)論:

火車的長度為120米;

火車的速度為30/秒;

火車整體都在隧道內(nèi)的時間為25秒;

隧道長度為750米.

其中正確的結(jié)論是_____.(把你認為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,海中有一小島P,在距小島P海里范圍內(nèi)有暗礁,一輪船自西向東航行,它在A處時測得小島P位于北偏東60°,且A、P之間的距離為32海里,若輪船繼續(xù)向正東方向航行,輪船有無觸礁危險?請通過計算加以說明.如果有危險,輪船自A處開始至少沿東偏南多少度方向航行,才能安全通過這一海域?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OA的方向是北偏東15°,OB的方向是西偏北50°,ODOB的反向延長線.

1)若∠AOC=∠AOB,求OC的方向.

2)在(1)問的條件下,作∠AOD的角平分線OE,求∠COE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】.如圖,用同樣規(guī)格的黑白兩色正方形瓷磚鋪設矩形地面,請觀察圖形,并探究下列問題:

在第個圖中,共有白色瓷磚________塊;在第個圖中,共有白色瓷磚________塊;

在第個圖中,共有瓷磚________塊;在第個圖中,共有瓷磚________塊;

如果每塊黑瓷磚元,白瓷磚元,鋪設當時,共需花多少錢購買瓷磚?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明遇到這樣一個問題,如圖,ABC中,∠BAC=120°,ADBCD,且AB+BD=DC.求∠C的度數(shù)。小明通過探究發(fā)現(xiàn),延長CD至點Q,使BQ=AB,再證明ADCADQ,使問題得到解決.

1)根據(jù)閱讀材料回答,ADCADQ的條件是________(SSS,SAS,AAS,ASA,HL)

2)參考小明思考問題的方法,解答下列問題:求∠C的度數(shù);

3)解決問題,如圖,已知,ABC中,過點B任意作射線l,在l上取一點D,使∠ABD=ACDAMBD于點M,且BM=MD+CD。探究ABAC的數(shù)量關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知矩形ABCD,AB6,AD8,將矩形ABCD繞點A順時針旋轉(zhuǎn)θθ360°)得到矩形AEFG,當θ_____°時,GCGB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】節(jié)約是中華民族的傳統(tǒng)美德.為倡導市民節(jié)約用水的意識,某市對市民用水實行階梯收費,制定了如下用水收費標準:每戶每月的用水不超過立方米時,水價為每立方米,超過立方米時,超過的部分按每立方米元收費.

(1)該市某戶居民9月份用水立方米(),應交水費元,請你用含的代數(shù)式表示;

(2)如果某戶居民12月份交水費,那么這個月該戶居民用了多少立方米水?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是邊長為6的正方形,點E在邊AB上,BE=4,過點EEFBC,分別交BD,CDG,F兩點.若M,N分別是DG,CE的中點,則MN的長為( 

A. 3 B. 4 C. D.

查看答案和解析>>

同步練習冊答案