【題目】如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(﹣1,0),頂點(diǎn)坐標(biāo)為(1,n),與y軸的交點(diǎn)在(0,2)、(0,3)之間(包含端點(diǎn)).有下列結(jié)論: ①當(dāng)x=3時(shí),y=0;
②3a+b>0;
③﹣1≤a≤﹣ ;
④ ≤n≤4.
其中正確的有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
【答案】C
【解析】解:①由拋物線的對(duì)稱性可知: 拋物線與x軸的另一交點(diǎn)橫坐標(biāo)為1×2﹣(﹣1)=3,
即點(diǎn)B的坐標(biāo)為(3,0),
∴當(dāng)x=3時(shí),y=0,①正確;
②∵拋物線開口向下,
∴a<0.
∵拋物線的頂點(diǎn)坐標(biāo)為(1,n),
∴拋物線的對(duì)稱軸為x=﹣ =1,
∴b=﹣2a,
3a+b=a<0,②不正確;
③∵拋物線與y軸的交點(diǎn)在(0,2)、(0,3)之間(包含端點(diǎn)),
∴2≤c≤3.
令x=﹣1,則有a﹣b+c=0,
又∵b=﹣2a,
∴3a=﹣c,即﹣3≤3a≤﹣2,
解得:﹣1≤a≤﹣ ,③正確;
④∵拋物線的頂點(diǎn)坐標(biāo)為(﹣ , ),
∴n= =c﹣ ,
又∵b=﹣2a,2≤c≤3,﹣1≤a≤﹣ ,
∴n=c﹣a, ≤n≤4,④正確.
綜上可知:正確的結(jié)論為①③④.
故選C.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系的相關(guān)知識(shí)可以得到問題的答案,需要掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時(shí),拋物線開口向上; a<0時(shí),拋物線開口向下b與對(duì)稱軸有關(guān):對(duì)稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)一種圓環(huán)甲(如圖1),它的外圓直徑是8厘米,環(huán)寬1厘米。
①如果把這樣的2個(gè)圓環(huán)扣在一起并拉緊(如圖2),長度為 厘米;
②如果用n個(gè)這樣的圓環(huán)相扣并拉緊,長度為 厘米。
(2)另一種圓環(huán)乙,像(1)中圓環(huán)甲那樣相扣并拉緊,
①3個(gè)圓環(huán)乙的長度是28cm,5個(gè)圓環(huán)乙的長度是44cm,求出圓環(huán)乙的外圓直徑和環(huán)寬;
②現(xiàn)有n(n>2)個(gè)圓環(huán)甲和n(n>2)個(gè)圓環(huán)乙,將它們像(1)中那樣相扣并拉緊,長度用n的代數(shù)式表示為多少厘米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù) 的圖象與一次函數(shù) 的圖象交于點(diǎn)A(1,4)、點(diǎn)B(-4,n).
(1)求 和 的值;
(2)求△OAB的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線 與 軸、 軸分別相交于點(diǎn)A(-1,0)和B(0,3),其頂點(diǎn)為D.
(1)求這條拋物線的解析式;
(2)若拋物線與 軸的另一個(gè)交點(diǎn)為E,求△ODE的面積;拋物線的對(duì)稱軸上是否存在點(diǎn)P使得△PAB的周長最短.若存在請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)(閱讀理解)
如圖(1),AD是△ABC的中線,作△ABC的高AH.
∵AD是△ABC的中線
∴BD=CD
∵S△ABD=BDAH,S△ACD=CDAH
∴S△ABD S△ACD(填:<或>或=)
(2)(結(jié)論拓展)
△ABC中,D是BC邊上一點(diǎn),若,則=
(3)(結(jié)論應(yīng)用)
如圖(3),請(qǐng)你將△ABC分成4個(gè)面積相等的三角形(畫出分割線即可)
如圖(4),BE是△ABC的中線,F是AB邊上一點(diǎn),連接CF交BE于點(diǎn)O,若,則= .說明你的理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC≌△DEF,DF∥BC,且∠B=60°,∠F=40°,點(diǎn)A在DE上,則∠BAD的度數(shù)為_________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為6的正三角形紙片ABC按如下順序進(jìn)行兩次折疊,展平后,得折痕AD,BE(如圖①),點(diǎn)O為其交點(diǎn).
(1)探求AO到OD的數(shù)量關(guān)系,并說明理由;
(2)如圖②,若P,N分別為BE,BC上的動(dòng)點(diǎn).
(Ⅰ)當(dāng)PN+PD的長度取得最小值時(shí),求BP的長度;
(Ⅱ)如圖③,若點(diǎn)Q在線段BO上,BQ=1,則QN+NP+PD的最小值= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,△ABC中,AD⊥BC,AE平分∠BAC.
(1)若∠B=30°,∠C=70°,求∠DAE的度數(shù),并說明理由;
(2)若∠B=α,∠C=β(α<β),請(qǐng)你根據(jù)(1)問的結(jié)果大膽猜想∠DAE與α,β間的等量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com