【題目】探究與發(fā)現(xiàn):如圖1所示的圖形,像我們常見(jiàn)的學(xué)習(xí)用品--圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”,
(1)觀察“規(guī)形圖”,試探究∠BDC與∠A、∠B、∠C之間的關(guān)系,并說(shuō)明理由;
(2)請(qǐng)你直接利用以上結(jié)論,解決以下三個(gè)問(wèn)題:
①如圖2,把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過(guò)點(diǎn)B、C,∠A=40°,則∠ABX+∠ACX等于多少度;
②如圖3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度數(shù);
③如圖4,∠ABD,∠ACD的10等分線(xiàn)相交于點(diǎn)G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度數(shù).
【答案】(1)詳見(jiàn)解析;(2)①50°;②85°;③63°.
【解析】
(1)連接AD并延長(zhǎng)至點(diǎn)F,根據(jù)外角的性質(zhì)即可得到∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,即可得出∠BDC=∠A+∠B+∠C;
(2)①根據(jù)(1)得出∠ABX+∠ACX+∠A=∠BXC,再根據(jù)∠A=40°,∠BXC=90°,即可求出∠ABX+∠ACX的度數(shù);
②先根據(jù)(1)得出∠ADB+∠AEB=90°,再利用DC平分∠ADB,EC平分∠AEB,即可求出∠DCE的度數(shù);
③由②得∠BG1C=(∠ABD+∠ACD)+∠A,設(shè)∠A為x°,即可列得(133-x)+x=70,求出x的值即可.
(1)如圖(1),連接AD并延長(zhǎng)至點(diǎn)F,
根據(jù)外角的性質(zhì),可得
∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD,
又∵∠BDC=∠BDF+∠CDF,∠BAC=∠BAD+∠CAD,
∴∠BDC=∠A+∠B+∠C;
(2)①由(1),可得
∠ABX+∠ACX+∠A=∠BXC,
∵∠A=40°,∠BXC=90°,
∴∠ABX+∠ACX=90°-40°=50°;
②由(1),可得
∠DBE=∠DAE+∠ADB+∠AEB,
∴∠ADB+∠AEB=∠DBE-∠DAE=130°-40°=90°,
∴(∠ADB+∠AEB)=90°÷2=45°,
∵DC平分∠ADB,EC平分∠AEB,
∴,,
∴∠DCE=∠ADC+∠AEC+∠DAE,
=(∠ADB+∠AEB)+∠DAE,
=45°+40°,
=85°;
③由②得∠BG1C=(∠ABD+∠ACD)+∠A,
∵∠BG1C=70°,
∴設(shè)∠A為x°,
∵∠ABD+∠ACD=133°-x°
∴(133-x)+x=70,
∴13.3-x+x=70,
解得x=63,
即∠A的度數(shù)為63°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中,,,點(diǎn)、分別在邊,上,且,連接,將對(duì)折,點(diǎn)落在直線(xiàn)上的點(diǎn)處,得折痕;將對(duì)折,點(diǎn)落在直線(xiàn)上的點(diǎn)處,得折痕,當(dāng),分別在邊,上時(shí).若令的面積為,的長(zhǎng)度為,則關(guān)于的函數(shù)解析式是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道:x2﹣6x=(x2﹣6x+9)﹣9=(x﹣3)2﹣9;﹣x2+10=﹣(x2﹣10x+25)+25=﹣(x﹣5)2+25,這一種方法稱(chēng)為配方法,利用配方法請(qǐng)解以下各題:
(1)按上面材料提示的方法填空:a2﹣4a= = .﹣a2+12a= = .
(2)探究:當(dāng)a取不同的實(shí)數(shù)時(shí)在得到的代數(shù)式a2﹣4a的值中是否存在最小值?請(qǐng)說(shuō)明理由.
(3)應(yīng)用:如圖.已知線(xiàn)段AB=6,M是AB上的一個(gè)動(dòng)點(diǎn),設(shè)AM=x,以AM為一邊作正方形AMND,再以MB、MN為一組鄰邊作長(zhǎng)方形MBCN.問(wèn):當(dāng)點(diǎn)M在AB上運(yùn)動(dòng)時(shí),長(zhǎng)方形MBCN的面積是否存在最大值?若存在,請(qǐng)求出這個(gè)最大值;否則請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD為正方形,點(diǎn)E為線(xiàn)段AC上一點(diǎn),連接DE,過(guò)點(diǎn)E作EF⊥DE,交射線(xiàn)BC于點(diǎn)F,以DE、EF為鄰邊作矩形DEFG,連接CG.
(1)如圖1,求證:矩形DEFG是正方形;
(2)若AB=2,CE=,求CG的長(zhǎng)度;
(3)當(dāng)線(xiàn)段DE與正方形ABCD的某條邊的夾角是30°時(shí),直接寫(xiě)出∠EFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:AB是⊙O的直徑,點(diǎn)C在⊙O上,CD是⊙O的切線(xiàn),AD⊥CD于點(diǎn)D.E是AB延長(zhǎng)線(xiàn)上一點(diǎn),CE交⊙O于點(diǎn)F,連結(jié)OC,AC.
(1)求證:AC平分∠DAO;
(2)若∠DAO=105°,∠E=30°.①求∠OCE的度數(shù).②若⊙O的半徑為,求線(xiàn)段EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=60°,∠BAC的平分線(xiàn)AD與邊BC的垂直平分線(xiàn)相交于點(diǎn)D,DE⊥AB交AB的延長(zhǎng)線(xiàn)于點(diǎn)E,DF⊥AC于點(diǎn)F,現(xiàn)有下列結(jié)論:①DE=DF;②DE+DF=AD;③AM平分∠ADF;④AB+AC=2AE;其中正確的有( )
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在平面直角坐標(biāo)系中,已知的三個(gè)頂點(diǎn)的坐標(biāo)分別為,,.
(1)將向上平移個(gè)單位長(zhǎng)度,再向左平移個(gè)單位長(zhǎng)度,得到,請(qǐng)畫(huà)出(點(diǎn),,的對(duì)應(yīng)點(diǎn)分別為,,)
(2)請(qǐng)畫(huà)出與關(guān)于軸對(duì)稱(chēng)的(點(diǎn),,的對(duì)應(yīng)點(diǎn)分別為,,)
(3)請(qǐng)寫(xiě)出,的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為8的正方形ABCD中,點(diǎn)O為AD上一動(dòng)點(diǎn)(4<OA<8),以O(shè)為圓心,OA的長(zhǎng)為半徑的圓交邊CD于點(diǎn)M,連接OM,過(guò)點(diǎn)M作⊙O的切線(xiàn)交邊BC于N.
(1)圖中是否存在與△ODM相似的三角形,若存在,請(qǐng)找出并給予證明;
(2)設(shè)DM=x,OA=R,求R關(guān)于x的函數(shù)關(guān)系式;
(3)在動(dòng)點(diǎn)O逐漸向點(diǎn)D運(yùn)動(dòng)(OA逐漸增大)的過(guò)程中,△CMN的周長(zhǎng)如何變化?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)(5mn2﹣4m2n)(﹣2mn)
(2)(x+7)(x﹣6)﹣(x﹣2)(x+1)
(3) (-)2 016×161 008;
【答案】(1)﹣10m2n3+8m3n2;(2)2x﹣40;(3)1.
【解析】試題分析:(1)原式利用單項(xiàng)式乘以多項(xiàng)式法則計(jì)算即可得到結(jié)果;
(2)原式兩項(xiàng)利用多項(xiàng)式乘以多項(xiàng)式法則計(jì)算,去括號(hào)合并即可得到結(jié)果;
(3)先根據(jù)冪的乘方的逆運(yùn)算,把(-)2 016化為()1008,再根據(jù)積的乘方的逆運(yùn)算計(jì)算即可.
試題解析:(1)原式=(5mn2)(﹣2mn)+(﹣4m2n)(﹣2mn)=﹣10m2n3+8m3n2;
(2)原式=x2﹣6x+7x﹣42﹣x2﹣x+2x+2=2x﹣40.
(3)原式=()1008×161 008=(×16)1 008=1.
【題型】解答題
【結(jié)束】
19
【題目】如圖,方格圖中每個(gè)小正方形的邊長(zhǎng)為1,點(diǎn)A、B、C都是格點(diǎn).
(1)畫(huà)出△ABC關(guān)于直線(xiàn)BM對(duì)稱(chēng)的△A1B1C1;
(2)寫(xiě)出AA1的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com