【題目】RtABC中,∠C=90°,B=30°,AB=10,點D是射線CB上的一個動點,ADE是等邊三角形,點FAB的中點,連接EF.

(1)如圖,點D在線段CB上時,

①求證:AEF≌△ADC;

②連接BE,設(shè)線段CD=x,BE=y,求y2﹣x2的值;

(2)當(dāng)∠DAB=15°時,求ADE的面積.

【答案】(1)①證明見解析;25;(2)為50+75..

【解析】

試題(1)、①在直角三角形ABC中,由30°所對的直角邊等于斜邊的一半求出AC的長,再由FAB中點,得到AC=AF=5,確定出三角形ADE為等邊三角形,利用等式的性質(zhì)得到一對角相等,再由AD=AE,利用SAS即可得證;②由全等三角形對應(yīng)角相等得到∠AEF為直角,EF=CD=x,在三角形AEF中,利用勾股定理即可列出y關(guān)于x的函數(shù)解析式;(2)、分兩種情況考慮:①當(dāng)點在線段CB上時;②當(dāng)點在線段CB的延長線上時,分別求出三角形ADE面積即可.

試題解析:(1)、①證明:在RtABC中,∵∠B=30°,AB=10,

∴∠CAB=60°,AC=AB=5, ∵點FAB的中點, AF=AB=5,

AC=AF, ∵△ADE是等邊三角形, AD=AE,EAD=60°, ∵∠CAB=EAD,

即∠CAD+∠DAB=FAE+∠DAB, ∴∠CAD=FAE, ∴△AEF≌△ADC(SAS);

②∵△AEF≌△ADC,∴∠AEF=C=90°,EF=CD=x,又∵點FAB的中點,

AE=BE=y, RtAEF中,勾股定理可得:y2=25+x2, y2﹣x2=25

(2)①當(dāng)點在線段CB上時, 由∠DAB=15°,可得∠CAD=45°,ADC是等腰直角三角形,

AD2=50, ADE的面積為;

②當(dāng)點在線段CB的延長線上時, 由∠DAB=15°,可得∠ADB=15°,BD=BA=10,

∴在RtACD中,勾股定理可得AD2=200+100ADE的面積為50 +75,

綜上所述,△ADE的面積為50 +75.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:直線AB與直線PQ交于點E,直線CD與直線PQ交于點F,∠PEB+QFD180°.

1)如圖1,求證:ABCD

2)如圖2,點G為直線PQ上一點,過點G作射線GHAB,在∠EFD內(nèi)過點F作射線FM,∠FGH內(nèi)過點G作射線GN,∠MFD=∠NGH,求證:FMGN;

3)如圖3,在(2)的條件下,點R為射線FM上一點,點S為射線GN上一點,分別連接RG、RSRE,射線RT平分∠ERS,∠SGR=∠SRG,TKRG,若∠KTR+ERF108°,∠ERT2TRF,∠BER40°,求∠NGH的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,BAD=BCD=90°,連接AC.若AC=6,則四邊形ABCD的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖六邊形ABCDEF與六邊形ABCDEF相似.

求:(1)相似比;

(2)A和∠B的度數(shù);

(3)CD,EF,AF′,ED的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數(shù)是(  )

A. 30° B. 60° C. 30°150° D. 60°120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點E,F分別在AB,CD上,AFCE,垂足為點O,∠1=∠B,

A+290°.求證:ABCD

證明:如圖,

∵∠1=∠B(已知)

CEBF(同位角相等,兩直線平行)

______________

∴∠AFC+290°(等式性質(zhì))

∵∠A+290°(已知)

∴∠AFC=∠A(同角或等角的余角相等)

ABCD(內(nèi)錯角相等,兩直線平行)

請你仔細(xì)觀察下列序號所代表的內(nèi)容:

①∴∠AOE90°(垂直的定義)

②∴∠AFB90°(等量代換)

③∵AFCE(已知)

④∵∠AFC+AFB+2180°(平角的定義)

⑤∴∠AOE=∠AFB(兩直線平行,同位角相等)

橫線處應(yīng)填寫的過程,順序正確的是(  )

A.⑤③①②④B.③④①②⑤C.⑤④③①②D.⑤②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角梯形ABCD,ADBC,B=90°,AD=18cm,BC=21cm,MAD上以1cm/s的速度由AD運動,NBC上以2cm/s的速度由CB運動.

(1)幾秒后MNCD為平行四邊形?

(2)幾秒后ABNM為矩形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上的AB兩點所對應(yīng)的數(shù)分別為a、bP為數(shù)軸上的一個動點.其中ab滿足(a12+|b+5|0,

1)若點PAB的中點,求P點對應(yīng)的數(shù).

2)若點PA點出發(fā),以每秒2個單位的速度向左運動,t秒后,求P點所對應(yīng)的數(shù)以及PB的距離.

3)若數(shù)軸上點MN所對應(yīng)的數(shù)為m、n,其中APM的中點,BPN的中點,無論點P在何處,是否為一個定值?若是,求出定值:若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把四張形狀大小完全相同的小長方形卡片(如圖①)不重疊的放在一個底面為長方形(長為m,寬為n)的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示,則圖②中兩塊陰影部分的周長和是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案