【題目】計(jì)算:
(1)(﹣ )﹣2﹣ +6cos30°;
(2)先化簡(jiǎn),再求值:(a+b)(a﹣b)﹣(a﹣2b)2 , 其中a=2,b=﹣1.
【答案】
(1)
解:(﹣ )﹣2﹣ +6cos30°
=9﹣2 +6×
=9﹣2 +2
=9;
(2)
解:(a+b)(a﹣b)﹣(a﹣2b)2
=a2﹣b2﹣a2+4ab﹣4b2
=4ab﹣5b2,
當(dāng)a=2,b=﹣1時(shí),原式=4×2×(﹣1)﹣5×1=﹣13
【解析】(1)本題涉及負(fù)整數(shù)指數(shù)冪、二次根式化簡(jiǎn)、特殊角的三角函數(shù)值3個(gè)考點(diǎn).在計(jì)算時(shí),需要針對(duì)每個(gè)考點(diǎn)分別進(jìn)行計(jì)算,然后根據(jù)實(shí)數(shù)的運(yùn)算法則求得計(jì)算結(jié)果;(2)根據(jù)完全平方公式和平方差公式化簡(jiǎn),然后把a(bǔ)、b的值代入計(jì)算.本題主要考查了實(shí)數(shù)的綜合運(yùn)算能力,是各地中考題中常見(jiàn)的計(jì)算題型.解決此類題目的關(guān)鍵是熟練掌握負(fù)整數(shù)指數(shù)冪、二次根式、特殊角的三角函數(shù)值等考點(diǎn)的運(yùn)算.同時(shí)考查了整式的混合運(yùn)算,涉及了完全平方公式、平方差公式、合并同類項(xiàng)的知識(shí)點(diǎn).注意運(yùn)算順序以及符號(hào)的處理.
【考點(diǎn)精析】本題主要考查了整數(shù)指數(shù)冪的運(yùn)算性質(zhì)和特殊角的三角函數(shù)值的相關(guān)知識(shí)點(diǎn),需要掌握aman=am+n(m、n是正整數(shù));(am)n=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù));分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=2x2﹣3的圖象是一條拋物線,下列關(guān)于該拋物線的說(shuō)法,正確的是( 。
A.拋物線開(kāi)口向下
B.拋物線經(jīng)過(guò)點(diǎn)(2,3)
C.拋物線的對(duì)稱軸是直線x=1
D.拋物線與x軸有兩個(gè)交點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,點(diǎn)C的坐標(biāo)為(0,3),點(diǎn)A在x軸的負(fù)半軸上,點(diǎn)D、M分別在邊AB、OA上,且AD=2DB,AM=2MO,一次函數(shù)y=kx+b的圖象過(guò)點(diǎn)D和M,反比例函數(shù)y= 的圖象經(jīng)過(guò)點(diǎn)D,與BC的交點(diǎn)為N.
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)若點(diǎn)P在直線DM上,且使△OPM的面積與四邊形OMNC的面積相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是△ABC邊AC上一個(gè)動(dòng)點(diǎn),過(guò)O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點(diǎn)E,交∠ACB的外角平分線于點(diǎn)F.
(1)求證:OE=OF;
(2)若CE=8,CF=6,求OC的長(zhǎng);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC和△DEF中,AB=AC,DE=DF,∠A=∠D.
(1)求證: ;
(2)由(1)中的結(jié)論可知,等腰三角形ABC中,當(dāng)頂角∠A的大小確定時(shí),它的對(duì)邊(即底邊BC)與鄰邊(即腰AB或AC)的比值也就確定,我們把這個(gè)比值記作T(A),即T(A)= 的對(duì)邊(底邊)/的領(lǐng)邊(腰)= ,如T(60°)=1.
①理解鞏固:T(90°)= , T(120°)= , 若α是等腰三角形的頂角,則T(α)的取值范圍是;
②學(xué)以致用:如圖2,圓錐的母線長(zhǎng)為9,底面直徑PQ=8,一只螞蟻從點(diǎn)P沿著圓錐的側(cè)面爬行到點(diǎn)Q,求螞蟻爬行的最短路徑長(zhǎng)(精確到0.1).
(參考數(shù)據(jù):T(160°)≈1.97,T(80°)≈1.29,T(40°)≈0.68)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙P的半徑為5,A、B是圓上任意兩點(diǎn),且AB=6,以AB為邊作正方形ABCD(點(diǎn)D、P在直線AB兩側(cè)).若AB邊繞點(diǎn)P旋轉(zhuǎn)一周,則CD邊掃過(guò)的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx經(jīng)過(guò)兩點(diǎn)A(﹣1,1),B(2,2).過(guò)點(diǎn)B作BC∥x軸,交拋物線于點(diǎn)C,交y軸于點(diǎn)D.
(1)求此拋物線對(duì)應(yīng)的函數(shù)表達(dá)式及點(diǎn)C的坐標(biāo);
(2)若拋物線上存在點(diǎn)M,使得△BCM的面積為 ,求出點(diǎn)M的坐標(biāo);
(3)連接OA、OB、OC、AC,在坐標(biāo)平面內(nèi),求使得△AOC與△OBN相似(邊OA與邊OB對(duì)應(yīng))的點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的12×12網(wǎng)格中,給出了四邊形ABCD的兩條邊AB與BC,且四邊形ABCD是一個(gè)軸對(duì)稱圖形,其對(duì)稱軸為直線AC.
(1)試在圖中標(biāo)出點(diǎn)D,并畫(huà)出該四邊形的另兩條邊;
(2)將四邊形ABCD向下平移5個(gè)單位,畫(huà)出平移后得到的四邊形A′B′C′D′.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com