【題目】如圖,在平面直角坐標系中,正方形OABC的頂點O與坐標原點重合,點C的坐標為(0,3),點A在x軸的負半軸上,點D、M分別在邊AB、OA上,且AD=2DB,AM=2MO,一次函數(shù)y=kx+b的圖象過點D和M,反比例函數(shù)y= 的圖象經(jīng)過點D,與BC的交點為N.
(1)求反比例函數(shù)和一次函數(shù)的表達式;
(2)若點P在直線DM上,且使△OPM的面積與四邊形OMNC的面積相等,求點P的坐標.
【答案】
(1)
解:∵正方形OABC的頂點C(0,3),
∴OA=AB=BC=OC=3,∠OAB=∠B=∠BCO=90°,
∵AD=2DB,
∴AD= AB=2,
∴D(﹣3,2),
把D坐標代入y= 得:m=﹣6,
∴反比例解析式為y=﹣ ,
∵AM=2MO,
∴MO= OA=1,即M(﹣1,0),
把M與D坐標代入y=kx+b中得: ,
解得:k=b=﹣1,
則直線DM解析式為y=﹣x﹣1;
(2)
解:把y=3代入y=﹣ 得:x=﹣2,
∴N(﹣2,3),即NC=2,
設P(x,y),
∵△OPM的面積與四邊形OMNC的面積相等,
∴ (OM+NC)OC= OM|y|,即|y|=9,
解得:y=±9,
當y=9時,x=﹣10,當y=﹣9時,x=8,
則P坐標為(﹣10,9)或(8,﹣9)
【解析】(1)由正方形OABC的頂點C坐標,確定出邊長,及四個角為直角,根據(jù)AD=2DB,求出AD的長,確定出D坐標,代入反比例解析式求出m的值,再由AM=2MO,確定出MO的長,即M坐標,將M與D坐標代入一次函數(shù)解析式求出k與b的值,即可確定出一次函數(shù)解析式;(2)把y=3代入反比例解析式求出x的值,確定出N坐標,得到NC的長,設P(x,y),根據(jù)△OPM的面積與四邊形OMNC的面積相等,求出y的值,進而得到x的值,確定出P坐標即可.此題考查了一次函數(shù)與反比例函數(shù)的交點問題,涉及的知識有:待定系數(shù)法確定一次函數(shù)、反比例函數(shù)解析式,坐標與圖形性質,正方形的性質,以及三角形面積計算,熟練掌握待定系數(shù)法是解本題的關鍵.
【考點精析】利用正方形的性質對題目進行判斷即可得到答案,需要熟知正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.
科目:初中數(shù)學 來源: 題型:
【題目】下列說法:
(1)在同一平面內,不相交的兩條直線一定平行.(2)在同一平面內,不相交的兩條線段一定平行.(3)相等的角是對頂角.(4)兩條直線被第三條直線所截,同位角相等.(5)兩條平行線被第三條直線所截,一對內錯角的角平分線互相平行.其中,正確說法的個數(shù)是( )
A. 1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標xOy中,正比例函數(shù)y=kx的圖象與反比例函數(shù)y= 的圖象都經(jīng)過點A(2,﹣2).
(1)分別求這兩個函數(shù)的表達式;
(2)將直線OA向上平移3個單位長度后與y軸交于點B,與反比例函數(shù)圖象在第四象限內的交點為C,連接AB,AC,求點C的坐標及△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,半徑為3的⊙O與Rt△AOB的斜邊AB切于點D,交OB于點C,連接CD交直線OA于點E,若∠B=30°,則線段AE的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABE向右平移2cm得到△DCF,如果△ABE的周長是16cm,那么四邊形ABFD的周長是( 。
A.16cm
B.18cm
C.20cm
D.21cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線m:y=ax2﹣6ax+c(a>0)的頂點A在x軸上,并過點B(0,1),直線n:y=﹣ x+ 與x軸交于點D,與拋物線m的對稱軸l交于點F,過B點的直線BE與直線n相交于點E(﹣7,7).
(1)求拋物線m的解析式;
(2)P是l上的一個動點,若以B,E,P為頂點的三角形的周長最小,求點P的坐標;
(3)拋物線m上是否存在一動點Q,使以線段FQ為直徑的圓恰好經(jīng)過點D?若存在,求點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)(﹣ )﹣2﹣ +6cos30°;
(2)先化簡,再求值:(a+b)(a﹣b)﹣(a﹣2b)2 , 其中a=2,b=﹣1.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙、丙三個布袋都不透明,甲袋中裝有1個紅球和1個白球;乙袋中裝有一個紅球和2個白球;丙袋中裝有2個白球.這些球除顏色外都相同.從這3個袋中各隨機地取出1個球. ①取出的3個球恰好是2個紅球和1個白球的概率是多少?
②取出的3個球全是白球的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com