【題目】問題情境:
在綜合與實(shí)踐課上,老師讓同學(xué)們以“矩形紙片的剪拼”為主題開展數(shù)學(xué)活動(dòng).如 圖 1,將:矩形紙片 ABCD 沿對角線 AC 剪開,得到△ABC 和△ACD.并且量得 AB =4cm,AC=8cm.
操作發(fā)現(xiàn):
(1)將圖 1 中的△ACD 以點(diǎn) A 為旋轉(zhuǎn)中心,按逆時(shí)針方向旋轉(zhuǎn)∠α,使∠α=∠BAC,得到如圖 2 所示的△AC′D,過點(diǎn) C 作 AC′的平行線,與 DC'的延長線 交于點(diǎn) E,則四邊形 ACEC′的形狀是 .
(2)創(chuàng)新小組將圖 1 中的△ACD 以點(diǎn) A 為旋轉(zhuǎn)中心,按逆時(shí)針方向旋轉(zhuǎn),使 B、 A、D 三點(diǎn)在同一條直線上,得到如圖 3 所示的△AC′D,連接 CC',取 CC′的中 點(diǎn) F,連接 AF 并延長至點(diǎn) G,使 FG=AF,連接 CG、C′G,得到四邊形 ACGC′, 發(fā)現(xiàn)它是正方形,請你證明這個(gè)結(jié)論.
實(shí)踐探究:
(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,進(jìn)行如下操作:將△ABC 沿著 BD 方向平移,使點(diǎn) B 與點(diǎn) A 重合,此時(shí) A 點(diǎn)平移至 A'點(diǎn),A'C 與 BC′相交于點(diǎn) H, 如圖 4 所示,連接 CC′,試求 tan∠C′CH 的值.
【答案】(1)菱形;(2)見解析;(3)tan∠C′CH=.
【解析】
(1)根據(jù)可以得到,再結(jié)合可以得到,而已知可以得到四邊形為平行四邊形,由于旋轉(zhuǎn),所以,從而得到四邊形為菱形;
(2)根據(jù)可以得到四邊形為平行四邊形,而,所以四邊形為菱形,那么只需要再證明一個(gè)直角即可,當(dāng)、、三點(diǎn)共線時(shí):,而根據(jù)旋轉(zhuǎn)的性質(zhì),,可以得到:
,從而證到四邊形為正方形;
(3)結(jié)合第二問可以得到,所以要求,就可以分別求出和得長度,由題意可以得到,那么,結(jié)合三角函數(shù)分別就可以分別求出和;
(1)菱形,理由如下:
由旋轉(zhuǎn)的性質(zhì)可得:
,即
又
四邊形為平行四邊形
由旋轉(zhuǎn)的性質(zhì)可得:
四邊形為菱形;
(2)正方形,理由如下:
四邊形為平行四邊形
又
四邊形為菱形
當(dāng)、、三點(diǎn)共線時(shí):
由旋轉(zhuǎn)的性質(zhì)得:
四邊形為正方形;
(3)在中,AB=4,AC=8,
由(2)結(jié)合平移知,
在中,
在中,;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P為拋物線yx2上一動(dòng)點(diǎn),以P為頂點(diǎn),且經(jīng)過原點(diǎn)O的拋物線,記作“yp”,設(shè)其與x軸另一交點(diǎn)為A,點(diǎn)P的橫坐標(biāo)為m.
(1)①當(dāng)△OPA為直角三角形時(shí),m= ;
②當(dāng)△OPA為等邊三角形時(shí),求此時(shí)“yp”的解析式;
(2)若P點(diǎn)的橫坐標(biāo)分別為1,2,3,…n(n為正整數(shù))時(shí),拋物線“yp”分別記作“”、“”…,“”,設(shè)其與x軸另外一交點(diǎn)分別為A1,A2,A3,…An,過P1,P2,P3,…Pn作x軸的垂線,垂足分別為H1,H2,H3,…Hn.
1)① Pn的坐標(biāo)為 ;OAn= ;(用含n的代數(shù)式來表示)
②當(dāng)PnHn﹣OAn=16時(shí),求n的值.
2)是否存在這樣的An,使得∠OP4An=90°,若存在,求n的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新冠肺炎疫情在全球蔓延,造成了嚴(yán)重的人員傷亡和經(jīng)濟(jì)損失,其中一個(gè)原因是新冠肺炎病毒傳播速度非?欤粋(gè)人如果感染某種病毒,經(jīng)過了兩輪的傳播后被感染的總?cè)藬?shù)將達(dá)到64人.
(1)求這種病毒每輪傳播中一個(gè)人平均感染多少人?
(2)按照上面的傳播速度,如果傳播得不到控制,經(jīng)過三輪傳播后一共有多少人被感染?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,BE⊥AC于點(diǎn)E,AD⊥BC于點(diǎn)D,∠BAD=45°,CD=,AD與BE交于點(diǎn)F,連接CF,則AD的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點(diǎn)A在反比例函數(shù)y=的圖象上.若點(diǎn)B在反比例函數(shù)y=的圖象上,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一座現(xiàn)代化大型單塔雙面扇形斜拉橋,主橋采用獨(dú)塔雙面索斜拉設(shè)計(jì),主橋樁呈“H”形,兩側(cè)用鋼絲繩斜拉固定.
問題提出:
如何測量主橋樁頂端至橋面的距離AD?
方案設(shè)計(jì):
如圖,某數(shù)學(xué)課題研究小組通過調(diào)查研究和實(shí)地測量,在橋面B處測得∠ABC=26.57°,再沿BD方向走21米至C處,在C處測得∠ACD=30.96°.
問題解決:
根據(jù)上述方案和數(shù)據(jù),求銀灘黃河大橋主橋樁頂端至橋面的距離AD.
(結(jié)果精確到1m,參考數(shù)據(jù):sin26.57°≈0.447,cos26.57°≈0.894,tan26.57°≈0.500,sin30.96°≈0.514,cos30.96°≈0.858,tan30.96°≈0.600)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖,其中每個(gè)小正方形的邊長為1個(gè)單位長度.
(1)畫出△ABC關(guān)于原點(diǎn)O的中心對稱圖形△A1B1C1;
(2)畫出將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△A2B2C2.
(3)在(2)的條件下,求點(diǎn)A旋轉(zhuǎn)到點(diǎn)A2所經(jīng)過的路線長(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】P是等邊△ABC內(nèi)部一點(diǎn),∠APB、∠BPC、∠CPA的大小之比是5:6:7,將△ABP逆時(shí)針旋轉(zhuǎn),使得AB與AC重合,則以PA、PB、PC的長為邊的三角形的三個(gè)角∠PCQ:∠QPC:∠PQC=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2﹣ax+a﹣1與x軸交于A,B兩點(diǎn)(點(diǎn)B在正半軸上),與y軸交于點(diǎn)C,OA=3OB.點(diǎn)P在CA的延長線上,點(diǎn)Q在第二象限拋物線上,S△PBQ=S△ABQ.
(1)求拋物線的解析式.
(2)求直線BQ的解析式.
(3)若∠PAQ=∠APB,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com