【題目】已知:關于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整數).
(1)求證:方程有兩個不相等的實數根;
(2)若方程的兩個實數根都是整數,求k的值.
【答案】(1)證明見解析(2)1或﹣1
【解析】
(1)根據一元二次方程的定義得k≠0,再計算判別式得到△=(2k-1)2,然后根據非負數的性質,即k的取值得到△>0,則可根據判別式的意義得到結論;(2)根據求根公式求出方程的根,方程的兩個實數根都是整數,求出k的值.
(1)證明:△=[﹣(4k+1)]2﹣4k(3k+3)=(2k﹣1)2.
∵k為整數,
∴(2k﹣1)2>0,即△>0.
∴方程有兩個不相等的實數根.
(2)解:∵方程kx2﹣(4k+1)x+3k+3=0為一元二次方程,
∴k≠0.
∵kx2﹣(4k+1)x+3k+3=0,即[kx﹣(k+1)](x﹣3)=0,
∴x1=3,.
∵方程的兩個實數根都是整數,且k為整數,
∴k=1或﹣1.
科目:初中數學 來源: 題型:
【題目】如圖,點B在線段AC上,點D、E在AC同側,∠A=∠C=90°,BD⊥BE,AD=BC.
(1)求證:AC=AD+CE;
(2)若AD=3,CE=5,點P為線段AB上的動點,連接DP,作PQ⊥DP,交直線BE于點Q; (i)當點P與A、B兩點不重合時,求 的值;
(ii)當點P從A點運動到AC的中點時,求線段DQ的中點所經過的路徑(線段)長.(直接寫出結果,不必寫出解答過程)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在△ABC中,∠ABC與∠ACB的平分線交于點O,根據下列條件,求出∠BOC的度數.
(1)已知∠ABC+∠ACB=100°,則∠BOC= .
(2)已知∠A=90°,求∠BOC的度數.
(3)從上述計算中,你能發(fā)現∠BOC與∠A的關系嗎?請直接寫出∠B0C與∠A的關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一棵大樹在一次強臺風中折斷倒下,未折斷樹桿AB與地面仍保持垂直的關系,而折斷部分AC與未折斷樹桿AB形成53°的夾角.樹桿AB旁有一座與地面垂直的鐵塔DE,測得BE=6米,塔高DE=9米.在某一時刻的太陽照射下,未折斷樹桿AB落在地面的影子FB長為4米,且點F、B、C、E在同一條直線上,點F、A、D也在同一條直線上.求這棵大樹沒有折斷前的高度.(參考數據:sin53°≈0.8,cos53°≈0.6,tan53°≈1.33)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,三角形ABC的頂點坐標分別是A(0,0),B(6,0),C(5,5).
(1)求三角形ABC的面積;
(2)如果三角形ABC的三個頂點的縱坐標不變,橫坐標增加3個單位長度,得到三角形A1B1C1,試在圖中畫出三角形A1B1C1,并寫出點A1,B1,C1的坐標;
(3)(2)中三角形A1B1C1與三角形ABC的大小、形狀有什么關系?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD的頂點A在第一象限,AB∥x軸,AD∥y軸,且對角線的交點與原點O重合.在邊AB從小于AD到大于AD的變化過程中,若矩形ABCD的周長始終保持不變,則經過動點A的反比例函數y= (k≠0)中k的值的變化情況是( )
A.一直增大
B.一直減小
C.先增大后減小
D.先減小后增大
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在書寫藝術字時,常常運用畫“平行線段”這種基本作圖方法,此圖是在書寫字“M”:
(1)請從正面,上面,右側三個不同方向上各找出一組平行線段,并用字母表示出來;
(2)EF與A′B′有何位置關系?CC′與DH有何位置關系?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校九年級10個班師生舉行畢業(yè)文藝匯演,每班2個節(jié)目,有歌唱與舞蹈兩類節(jié)目,年級統(tǒng)計后發(fā)現歌唱類節(jié)目數比舞蹈類節(jié)目數的2倍少4個.
(1)九年級師生表演的歌唱與舞蹈類節(jié)目數各有多少個?
(2)該校七、八年級師生有小品節(jié)目參與,在歌唱、舞蹈、小品三類節(jié)目中,每個節(jié)目的演出平均用時分別是5分鐘、6分鐘、8分鐘,預計所有演出節(jié)目交接用時共花15分鐘.若從20:00開始,22:30之前演出結束,問參與的小品類節(jié)目最多能有多少個?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com