【題目】如圖,矩形ABCD的頂點A在第一象限,AB∥x軸,AD∥y軸,且對角線的交點與原點O重合.在邊AB從小于AD到大于AD的變化過程中,若矩形ABCD的周長始終保持不變,則經(jīng)過動點A的反比例函數(shù)y= (k≠0)中k的值的變化情況是(
A.一直增大
B.一直減小
C.先增大后減小
D.先減小后增大

【答案】C
【解析】解:設(shè)矩形ABCD中,AB=2a,AD=2b. ∵矩形ABCD的周長始終保持不變,
∴2(2a+2b)=4(a+b)為定值,
∴a+b為定值.
∵矩形對角線的交點與原點O重合
∴k= AB AD=ab,
又∵a+b為定值時,當a=b時,ab最大,
∴在邊AB從小于AD到大于AD的變化過程中,k的值先增大后減。
故選:C.
設(shè)矩形ABCD中,AB=2a,AD=2b,由于矩形ABCD的周長始終保持不變,則a+b為定值.根據(jù)矩形對角線的交點與原點O重合及反比例函數(shù)比例系數(shù)k的幾何意義可知k= AB AD=ab,再根據(jù)a+b一定時,當a=b時,ab最大可知在邊AB從小于AD到大于AD的變化過程中,k的值先增大后減。

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一個正方體的展開圖,標注了字母,的面分別是正方體的正面和底面,其他面分別用字母,,,表示.已知,,,

(1)如果正方體的左面與右面所標注字母代表的代數(shù)式的值相等,求出的值;

(2)如果正面字母代表的代數(shù)式與對面字母代表的代數(shù)式的值相等,且為整數(shù),求整數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:

在學習“分式方程及其解法”過程中,老師提出一個問題:若關(guān)于x的分式方程的解為正數(shù),求a的取值范圍?

經(jīng)過獨立思考與分析后,小明和小聰開始交流解題思路如下:

小明說:解這個關(guān)于x的分式方程,得到方程的解為.由題意可得,所以,問題解決.

小聰說:你考慮的不全面.還必須保證才行.

請回答:_______________的說法是正確的,并說明正確的理由是:__________________.

完成下列問題:

(1)已知關(guān)于x的方程的解為非負數(shù),求m的取值范圍;

(2)若關(guān)于x的分式方程無解.直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:關(guān)于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整數(shù)).

(1)求證:方程有兩個不相等的實數(shù)根;

(2)若方程的兩個實數(shù)根都是整數(shù),求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,CA=CB,∠ACB=90°,AB=2,點D為AB的中點,以點D為圓心作圓心角為90°的扇形DEF,點C恰在弧EF上,則圖中陰影部分的面積為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電器超市銷售每臺進價分別為200,170元的A,B兩種型號的電風扇,表中是近兩周的銷售情況:

銷售時段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一周

3

5

1800

第二周

4

10

3100

(進價、售價均保持不變利潤=銷售收入-進貨成本)

(1)A,B兩種型號的電風扇的銷售單價.

(2)若超市準備用不多于5400元的金額再采購這兩種型號的電風扇共30,A種型號的電風扇最多能采購多少臺?

(3)(2)的條件下,超市銷售完這30臺電風扇能否實現(xiàn)利潤為1400元的目標?若能,請給出相應(yīng)的采購方案;若不能請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等腰三角形ABC在平面直角坐標系中的位置如圖所示,已知點A(﹣6,0),點B在原點,CA=CB=5,把等腰三角形ABC沿x軸正半軸作無滑動順時針翻轉(zhuǎn),第一次翻轉(zhuǎn)到位置①,第二次翻轉(zhuǎn)到位置②依此規(guī)律,第18次翻轉(zhuǎn)后點C的縱坐標是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在下列解題過程的空白處填上適當?shù)膬?nèi)容(推理的理由或數(shù)學表達式)

如圖,已知ABCDBE、CF分別平分∠ABC和∠DCB,求證:BECF

證明:∵ABCD,(已知)

∴∠_______=∠__________________________________

__________________________________________,(已知)

∴∠EBC=_______,(角平分線定義)

同理,∠FCB=______________

∴∠EBC=∠FCB.(等式性質(zhì))

BE//CF_____________________________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2016年《政府工作報告》中提出了十大新詞匯,為了解同學們對新詞匯的關(guān)注度,某數(shù)學興趣小組選取其中的A:“互聯(lián)網(wǎng)+政務(wù)服務(wù)”,B:“工匠精神”,C:“光網(wǎng)城市”,D:“大眾旅游時代”四個熱詞在全校學生中進行了抽樣調(diào)查,要求被調(diào)查的每位同學只能從中選擇一個我最關(guān)注的熱詞.根據(jù)調(diào)查結(jié)果,該小組繪制了如下的兩幅不完整的統(tǒng)計圖.
請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)本次調(diào)查中,一共調(diào)查了多少名同學?
(2)條形統(tǒng)計圖中,m= , n=;
(3)扇形統(tǒng)計圖中,熱詞B所在扇形的圓心角是多少度?

查看答案和解析>>

同步練習冊答案