【題目】一道作圖題如下:
已知:如圖1,∠ABC及BC邊上一點D.
求作:一點P,使點P到∠ABC兩邊的距離相等,且到B,D兩點的距離相等.下面是一位同學的作圖過程(圖2):
(1)作∠ABC的平分線BE;
(2)作線段BD的垂直平分線l,與BE交于點P.
所以點P就是所求作的點.則該作圖的依據(jù)是___________________________________.
科目:初中數(shù)學 來源: 題型:
【題目】某校開展了“互助、平等、感恩、和諧、進取”主題班會活動,活動后,就活動的個主題進行了抽樣調(diào)查(每位同學只選最關注的一個),根據(jù)調(diào)查結果繪制了兩幅不完整的統(tǒng)計圖.根據(jù)圖中提供的信息,解答下列問題:
(1)這次調(diào)查的學生共有多少名?
(2)請將條形統(tǒng)計圖補充完整,并在扇形統(tǒng)計圖中計算出“進取”所對應的圓心角的度數(shù).
(3)如果要在這個主題中任選兩個進行調(diào)查,根據(jù)(2)中調(diào)查結果,用樹狀圖或列表法,求恰好選到學生關注最多的兩個主題的概率(將互助、平等、感恩、和諧、進取依次記為A、B、C、D、E).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ABC=∠ACB,點D在BC所在的直線上,點E在射線AC上,且AD=AE,連接DE.
⑴如圖①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度數(shù);
⑵如圖②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度數(shù);
⑶當點D在直線BC上(不與點B、C重合)運動時,試探究∠BAD與∠CDE的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,A1(1,),A2(,),A3(2,),A4(3,0).作折線A1A2A3A4關于點A4的中心對稱圖形,再做出新的折線關于與x軸的下一個交點的中心對稱圖形……以此類推,得到一個大的折線.現(xiàn)有一動點P從原點O出發(fā),沿著折線一每秒1個單位的速度移動,設運動時間為t.當t=2020時,點P的坐標為( 。
A.(1010,)B.(2020,)C.(2016,0)D.(1010,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學圖書館將圖書分為自然科學、文學藝術、社會百科、數(shù)學四類在“讀書月”活動中,為了了解圖書的借閱情況,圖書管理員對本月各類圖書的借閱進行了統(tǒng)計,圖1和圖2是圖書管理員通過采集數(shù)據(jù)后繪制的兩幅不完整的頻率分布表與頻數(shù)分布條形圖.請你根據(jù)圖表中提供的信息,解答以下問題:
(1)填充圖1頻率分布表中的空格;
(2)在圖2中,將表示“自然科學”的部分補充完整;
(3)若該學校打算采購一萬冊圖書,請你估算“數(shù)學”類圖書應采購多少冊較合適?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:求1+2+22+23+24+…+22017的值.
解:設S=1+2+22+23+24+…+22017,
將等式兩邊同時乘以2得,2S=2+22+23+24+25+…+22017+22018,
將下式減去上式得:2S-S=22018-1,即S=22018-1,
所以1+2+22+23+24+…+2201722018-1,
請你依照此法計算:
(1)1+2+22+23+24+…+29;
(2)1+5+52+53+54+…+5n(其中n為正整數(shù)).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若一個三角形一條邊的平方等于另兩條邊的乘積,我們把這個三角形叫做比例三角形.
已知是比例三角形,,,請直接寫出所有滿足條件的AC的長;
如圖1,在四邊形ABCD中,,對角線BD平分,求證:是比例三角形.
如圖2,在的條件下,當時,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知平面直角坐標系中,點C(3,4),以OC為邊作菱形OABC,且點A落在x軸的正半軸上,點D為y軸上的一個動點,設D(0,m),連結DB,交直線OC于點E.
(1)填空:B的坐標為( ),sin∠AOC= ;
(2)當點D在y軸正半軸時,記△DEO的面積為S1,△BCE的面積為S2,當S1=S2時,求m的值.
(3)過點D,O,A作⊙M,交線段OC于點F.
①當⊙M與菱形OABC一邊所在的直線相切時,求所有滿足條件的m的值.
②當OD=DE時,直接寫出OE:EF的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O直徑,AC為⊙O的弦,過⊙O外的點D作DE⊥OA于點E,交AC于點F,連接DC并延長交AB的延長線于點P,且∠D=2∠A,作CH⊥AB于點H.
(1)判斷直線DC與⊙O的位置關系,并說明理由;
(2)若HB=2,cosD=,請求出AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com