【題目】中國(guó)“蛟龍”號(hào)深潛器目前最大深潛極限為7062.68米.如圖,某天該深潛器在海面下2000米的A點(diǎn)處作業(yè),測(cè)得俯角為30°正前方的海底C點(diǎn)處有黑匣子信號(hào)發(fā)出.該深潛器受外力作用可繼續(xù)在同一深度直線航行3000米后,再次在B點(diǎn)處測(cè)得俯角為45°正前方的海底C點(diǎn)處有黑匣子信號(hào)發(fā)出,請(qǐng)通過(guò)計(jì)算判斷“蛟龍”號(hào)能否在保證安全的情況下打撈海底黑匣子.(參考數(shù)據(jù) ≈1.732)

【答案】解:過(guò)點(diǎn)C作CE⊥AB交AB延長(zhǎng)線于E,

設(shè)CE=x,
在Rt△BCE中,∵∠CBE=45°,
∴BE=CE=x,
在Rt△ACE中,∵∠CAE=30°,
∴AE= x,
∵AB+BE=AE,
∴3000+x= x,
解得:x=1500( +1)≈4098(米),
顯然2000+4098=6098<7062.68,
所以“蛟龍”號(hào)能在保證安全的情況下打撈海底黑匣子.
【解析】過(guò)點(diǎn)C作CE⊥AB交AB延長(zhǎng)線于E,設(shè)CE=x,在Rt△BCE和Rt△ACE中分別用x表示BE和AE的長(zhǎng)度,然后根據(jù)AB+BE=AE,列出方程求出x的值,繼而可判斷“蛟龍”號(hào)能在保證安全的情況下打撈海底黑匣子.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解關(guān)于方向角問(wèn)題的相關(guān)知識(shí),掌握指北或指南方向線與目標(biāo)方向 線所成的小于90°的水平角,叫做方向角.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,甲轉(zhuǎn)盤被分成 3 個(gè)面積相等的扇形,乙轉(zhuǎn)盤被分成4個(gè)面積相等的扇形,每一個(gè)扇形都標(biāo)有相應(yīng)的數(shù)字.同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止后,設(shè)甲轉(zhuǎn)盤中指針?biāo)竻^(qū)域內(nèi)的數(shù)字為x,乙轉(zhuǎn)盤中指針?biāo)竻^(qū)域內(nèi)的數(shù)字為y(當(dāng)指針指在邊界線上時(shí),重轉(zhuǎn),直到指針指向一個(gè)區(qū)域?yàn)橹梗?
(1)請(qǐng)你用畫樹狀圖或列表格的方法,求點(diǎn)(x,y)落在第二象限內(nèi)的概率;
(2)直接寫出點(diǎn)(x,y)落在函數(shù)y=﹣ 圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定直線l:y=kx,拋物線C:y=ax2+bx+1.

(1)當(dāng)b=1時(shí),l與C相交于A,B兩點(diǎn),其中A為C的頂點(diǎn),B與A關(guān)于原點(diǎn)對(duì)稱,求a的值;
(2)若把直線l向上平移k2+1個(gè)單位長(zhǎng)度得到直線l′,則無(wú)論非零實(shí)數(shù)k取何值,直線l′與拋物線C都只有一個(gè)交點(diǎn).
①求此拋物線的解析式;
②若P是此拋物線上任一點(diǎn),過(guò)P作PQ∥y軸且與直線y=2交于Q點(diǎn),O為原點(diǎn).求證:OP=PQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,點(diǎn)D在邊AB上,線段DC繞點(diǎn)D逆時(shí)針旋轉(zhuǎn),端點(diǎn)C恰巧落在邊AC上的點(diǎn)E處.如果 =m, =n.那么m與n滿足的關(guān)系式是:m=(用含n的代數(shù)式表示m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A(4,0),B(3,3),以AO,AB為邊作平行四邊形OABC,則經(jīng)過(guò)C點(diǎn)的反比例函數(shù)的解析式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A(4,0),B(3,3),以AO,AB為邊作平行四邊形OABC,則經(jīng)過(guò)C點(diǎn)的反比例函數(shù)的解析式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BD為⊙O的直徑,AB=AC,AD交BC于點(diǎn)E,AE=1,ED=2.
(1)求證:∠ABC=∠D;
(2)求AB的長(zhǎng);
(3)延長(zhǎng)DB到F,使得BF=BO,連接FA,試判斷直線FA與⊙O的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=ax2+bx+c(b>a>0)與x軸最多有一個(gè)交點(diǎn),現(xiàn)有以下四個(gè)結(jié)論:①該拋物線的對(duì)稱軸在y軸左側(cè);②關(guān)于x的方程ax2+bx+c+2=0無(wú)實(shí)數(shù)根;③a﹣b+c≥0; 的最小值為3.其中正確的是(
A.①②③
B.②③④
C.①③④
D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△OPA和△OQB分別是以O(shè)P、OQ為直角邊的等腰直角三角形,點(diǎn)C、D、E分別是OA、OB、AB的中點(diǎn).

(1)當(dāng)∠AOB=90°時(shí)如圖1,連接PE、QE,直接寫出EP與EQ的大小關(guān)系;
(2)將△OQB繞點(diǎn)O逆時(shí)針方向旋轉(zhuǎn),當(dāng)∠AOB是銳角時(shí)如圖2,(1)中的結(jié)論是否成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)加以說(shuō)明.
(3)仍將△OQB繞點(diǎn)O旋轉(zhuǎn),當(dāng)∠AOB為鈍角時(shí),延長(zhǎng)PC、QD交于點(diǎn)G,使△ABG為等邊三角形如圖3,求∠AOB的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案