如圖所示,四邊形ABCD是菱形,對角線AC,BD相交于點O,DH⊥AB于點H,連接OH,求證:∠DHO=∠DCO.
分析:根據菱形的性質可得點O是BD的中點,由直角三角形斜邊上的中線等于斜邊的一半,可得OH=OB,從而有△OHB是等腰三角形,所以∠OHB=∠OBH=∠ODC.由等角的余角相等即可證出∠DHO=∠DCO.
證明:∵ 四邊形ABCD是菱形,
∴ OD=OB,∠COD=90°,∠ODC=∠OBH.
∵ DH⊥AB于點H,∴ ∠DHB=90°.
∴ HO=BD=OB,∴ ∠OHB=∠OBH.
∴ ∠OHB=∠ODC.
在Rt△COD中,∠ODC+∠DCO=90°.
在Rt△DHB中,∠DHO+∠OHB=90°.
∴ ∠DHO=∠DCO.
點撥:本題綜合考查了菱形的性質、直角三角形的性質及等腰三角形的性質.菱形的對角線互相垂直平分為充分利用直角三角形的性質創(chuàng)造了條件.
科目:初中數學 來源: 題型:
如圖,△ABC中,AB=AC,D是BC的中點,AC的垂直平分線分別交AC、AD、AB于點E、O、F,則圖中全等三角形的對數是( )
A.1對 B.2對 C.3對 D.4對
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖1,△ABC中,∠ACB=90°,CE⊥AB于E,D在線段AB上,AD=AC,AF平分∠CAE交CE于F.
(1)求證:FD∥CB;
(2)若D在線段BA的延長線上,AF是∠CAD的角平分線AM的反向延長線,其他條件不變,如圖2,問(1)中結論是否仍成立?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
甲每天做4個零件,乙每天做3個零件,甲乙分別已經做了6個和10個零件,問幾天后兩人所做零件數相等。如果設x天后兩人所做零件數相等。那么可列方程為 。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com