【題目】已知,在平面直角坐標(biāo)系中,點(diǎn)A0,1),B(0,5),C(5,0),且點(diǎn)P在第一象限運(yùn)動,且∠APB=45°,則PC的最小值為_____.

【答案】.

【解析】

作線段AB的垂直平分線MNAB于點(diǎn)N,在MN上截取MN2,M為圓心,BM半徑作圓,點(diǎn) , MNAB,MNANBN,可得∠AMB90°,從而可證明點(diǎn)P在優(yōu)弧上,連接BM并延長交于點(diǎn)P,必交軸于點(diǎn)C,利用勾股定理可得,,答案即可解得.

作線段AB的垂直平分線MNAB于點(diǎn)N,在MN上截取MN2,M為圓心,BM半徑作圓,點(diǎn) ,

MNAB,MNANBN,

∴∠MAB=∠MBA45°,

∴∠AMB90°,

∴點(diǎn)P在優(yōu)弧上,∠APB45°,

連接BM并延長交于點(diǎn)P,必交軸于點(diǎn)C,

BNMN2,

,

BP,

OBOC5,

,

PCBCBP.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,AB是⊙O的直徑,∠B=30°,弦BC=6,ACB的平分線交⊙OD,連AD.

(1)求直徑AB的長.

(2)求陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知ABO的直徑,ACO的弦,過O點(diǎn)作OFABO于點(diǎn)D,交AC于點(diǎn)E,交BC的延長線于點(diǎn)F,點(diǎn)GEF的中點(diǎn),連接CG

(1)判斷CGO的位置關(guān)系,并說明理由;

(2)求證:2OB2BCBF;

(3)如圖2,當(dāng)∠DCE2F,CE3DG2.5時,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+mx+nx軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對稱軸交x軸于點(diǎn)D,已知A1,0),C0,2).

1)求拋物線的表達(dá)式;

2)在拋物線的對稱軸上是否存在點(diǎn)P,使PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點(diǎn)的坐標(biāo);如果不存在,請說明理由;

3)點(diǎn)E時線段BC上的一個動點(diǎn),過點(diǎn)Ex軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y2x+1與雙曲線相交于點(diǎn)Am,)與x軸交于點(diǎn) B

1)求雙曲線的函數(shù)表達(dá)式:

2)點(diǎn)Px軸上,如果△ABP的面積為6,求點(diǎn)P坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABC是等邊三角形,點(diǎn)D、E分別在BC、AC上,且CEBD,BE、AD相交于點(diǎn)F.求證:

(1)ABD≌△BCE

(2)AEF∽△ABE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在RtABC中,∠B90°,AC60cm,∠A60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/s的速度向點(diǎn)A勻速運(yùn)動,同時點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/s的速度向點(diǎn)B勻速運(yùn)動,當(dāng)其中一個點(diǎn)到達(dá)終點(diǎn)時,另一個點(diǎn)也隨之停止運(yùn)動,設(shè)點(diǎn)DE運(yùn)動的時間是ts0t≤15),過點(diǎn)DDFBC于點(diǎn)F,連接DE,EF,若四邊形AEFD為菱形,則t的值為( )

A.20B.15C.10D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4BC3BD為對角線.點(diǎn)P從點(diǎn)B出發(fā),沿線段BA向點(diǎn)A運(yùn)動,點(diǎn)Q從點(diǎn)D出發(fā),沿線段DB向點(diǎn)B運(yùn)動,兩點(diǎn)同時出發(fā),速度都為每秒1個單位長度,當(dāng)點(diǎn)P運(yùn)動到A時,兩點(diǎn)都停止.設(shè)運(yùn)動時間為t秒.

1)是否存在某一時刻t,使得PQAD?若存在,求出t的值;若不存在,說明理由.

2)設(shè)四邊形BPQC的面積為S,求St之間的函數(shù)關(guān)系式.

3)是否存在某一時刻t,使得S四邊形BPQCS矩形ABCD920?若存在,求出t的值;若不存在,則說明理由.

4)是否存在某一時刻t,使得PQCQ?若存在,求出t的值;若不存在,則說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了對甲,乙兩名同學(xué)進(jìn)行學(xué)生會主席的競選考核、召開了一次競選答辯及民主測評會.由A,BC,D,E五位教師評委對競選答辯進(jìn)行評分,并選出20名學(xué)生代表參加民主投票.競選答辯的結(jié)果如下表所示:

評委

得分

選手

A

B

C

D

E

92

88

90

94

96

84

86

90

93

91

民主投票的結(jié)果為:甲8票,乙12票.

根據(jù)以上信息解答下列問題:

1)甲,乙兩人的競選答辯得分分別是多少?

2)如果綜合得分=競選答辯得分+民主投票得分,那么,甲,乙兩人誰當(dāng)選學(xué)生會主席?

3)如果綜合得分=競選答辯得分民主投票得分,那么,當(dāng)時,甲,乙兩人誰當(dāng)選學(xué)生會主席?

查看答案和解析>>

同步練習(xí)冊答案