【題目】如圖,在平面直角坐標系中,直線y=kx+b經過點A(2,0),B(0,1),動點P是x軸正半軸上的動點,過點P作PC⊥x軸,交直線AB于點C,以OA,AC為邊構造OACD,設點P的橫坐標為m.
(1)求直線AB的函數表達式;
(2)若四邊形OACD恰是菱形,請求出m的值;
(3)在(2)的條件下,y軸的正半軸上是否存在點Q,連結CQ,使得∠OQC+∠ODC=180°.若存在,直接寫出所有符合條件的點Q的坐標,若不存在,則說明理由.
【答案】
(1)
解:把A(2,0),B(O,1)代入y=kx+b,
可得 ,解得 ,
∴直線AB的函數表達式為y=﹣ x+1
(2)
解:∵OACD是菱形,
∴AC=OA=2,
∵PC⊥x軸,交直線AB于點C,
∴C(m,﹣ m+1),
∴(2﹣m)2+(﹣ m+1)2=22,
解得m1= ,m2=
(3)
解:由(2)求得m1= ,m2= ,且C點在直線AB上,
∴C點坐標為( ,﹣ )或( , ),
∵OACD是菱形,
∴∠D=∠OAC,
要使∠OQC+∠ODC=180°,即;∠OQC+∠OAC=180°,
∴四邊形QOAC的對角互補,
∴∠QOA+∠QCA=180°,
∵∠QOA=90°,
∴∠QCA=90°,
∴QC⊥AB,
設Q(0,n),
∴直線QC的解析式為y=2x+n,
把C點坐標分別代入y=2x+n,可得﹣ =2× +n或 =2× +n,
解得n=﹣4+2 或n=﹣4﹣2 (舍去),
∴點Q的坐標為(0,﹣4+2 ),
綜上可知存在滿足條件的點Q,其坐標為(0,﹣4+2 )
【解析】(1)把點A(2,0),B(0,1)代入直線y=kx+b解方程可得;(2)根據菱形的性質得到AC=2,由點C(m,﹣ m+1)得到AP=|2﹣m|,CP=﹣
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為12的正方形ABCD中,E是邊CD的中點,將△ADE沿AE對折至△AFE,延長EF交BC于點G.則BG的長為( 。
A. 5 B. 4 C. 3 D. 2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知數軸上點A表示的為8,B是數軸上一點,且AB=14,動點P從點A出發(fā),以每秒5個單位長度的速度沿數軸向左勻速運動,設運動時間為t(t>0)秒.
(1)寫出數軸上點B表示的數 ,點P表示的數 (用含t的代數式表示);
(2)動點H從點B出發(fā),以每秒3個單位長度的速度沿數軸向左勻速運動,若點P、H同時出發(fā),問點P運動多少秒時追上點H?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB=4,BC=2.若把它放在平面直角坐標系中,使AB在x軸上,點C在y軸上,如果點A的坐標為(-3,0),求點B,C,D的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,A、B分別為數軸上的兩點,A點對應的數為﹣20,B點對應的數為100.
(1)請寫出與A,B兩點距離相等的點M所對應的數 .
(2)現有一只電子螞蟻P從B點出發(fā),以6單位/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發(fā),以4單位/秒的速度向右運動,x秒后兩只電子螞蟻在數軸上的C點相遇,請列方程求出x,并指出點C表示的數.
(3)若當電子螞蟻P從B點出發(fā)時,以6單位/秒的速度向左運動,同時另一只電子螞蟻Q恰好從A點出發(fā),以4單位/秒的速度也向左運動,y秒后兩只電子螞蟻在數軸上的D點相遇,請列方程求出y并指出點D表示的數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家之一.為了倡導“節(jié)約用水從我做起”,小剛在他所在班的50名同學中,隨機調查了10名同學家庭中一年的月均用水量(單位:t),并將調查結果繪成了如下的條形統(tǒng)計圖
【1】求這10個樣本數據的平均數、眾數和中位數;
【2】根據樣本數據,估計小剛所在班50名同學家庭中月均用水量不超過7 t的約有多少戶.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知正方形ABCD,P為射線AB上的一點,以BP為邊作正方形BPEF,使點F在線段CB的延長線上,連接EA,EC.
(Ⅰ)如圖1,若點P在線段AB的延長線上,求證:EA=EC;
(Ⅱ)如圖2,若點P在線段AB的中點,連接AC,判斷△ACE的形狀,并說明理由;
(Ⅲ)如圖3,若點P在線段AB上,連接AC,當EP平分∠AEC時,設AB=a,BP=b,求a:b及∠AEC的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖1,點A、O、B依次在直線MN上,現將射線OA繞點O沿順時針方向以每秒2°的速度旋轉,同時射線OB繞點O沿逆時針方向以每秒4°的速度旋轉,如圖2,設旋轉時間為t(0秒≤t≤90秒).
(1)用含t的代數式表示∠MOA的度數.
(2)在運動過程中,當∠AOB第二次達到60°時,求t的值.
(3)在旋轉過程中是否存在這樣的t,使得射線OB是由射線OM、射線OA、射線ON中的其中兩條組成的角(指大于0°而不超過180°的角)的平分線?如果存在,請直接寫出t的值;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com