【題目】如圖,平行四邊形ABCD,AB=4,BC=2.若把它放在平面直角坐標(biāo)系中使ABx軸上,點(diǎn)Cy軸上,如果點(diǎn)A的坐標(biāo)為(-3,0),求點(diǎn)B,CD的坐標(biāo).

【答案】點(diǎn)B,C,D的坐標(biāo)分別為(1,0),(0,)(-4,).

【解析】首先根據(jù)AB的長度和點(diǎn)A的坐標(biāo)得出點(diǎn)B的坐標(biāo),根據(jù)BCOB的長度以及直角三角形的勾股定理求出OC的長度,從而得出點(diǎn)C的坐標(biāo),根據(jù)平行四邊形的性質(zhì)得出點(diǎn)D的坐標(biāo).

AB=4,點(diǎn)A的坐標(biāo)為(-3,0), 設(shè)點(diǎn)B的坐標(biāo)為(b,0),

b-(-3)=b+3=4,∴b=1,∴點(diǎn)B的坐標(biāo)為(1,0). 設(shè)點(diǎn)C的坐標(biāo)為(0,c),

OB=1,BC=2,得OC=,∴點(diǎn)C的坐標(biāo)為(0,).

CDAB,∴點(diǎn)D的坐標(biāo)為(-4,).

∴點(diǎn)B,C,D的坐標(biāo)分別為(1,0),(0,)(-4,).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,有一個菱形BFDE(點(diǎn)E,F(xiàn)分別在線段AB,CD上),記它們的面積分別為SABCD和SBFDE , 現(xiàn)給出下列命題:①若 = ,則tan∠EDF= ;②若DE2=BDEF,則DF=2AD,則(
A.①是假命題,②是假命題
B.①是真命題,②是假命題
C.①是假命題,②是真命題
D.①是真命題,②是真命題

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程(組)解應(yīng)用題

(1)某中學(xué)組織初一學(xué)生春游,原計劃租用45座汽車若干輛,但有15人沒有座位;若租用同樣數(shù)量的60座汽車,則比45座汽車多出一輛無人乘坐,但其余客車恰好坐滿.問初一年級人數(shù)是多少?原計劃租用45座汽車多少輛?

(2)《孫子算經(jīng)》是中國古代重要的數(shù)學(xué)著作,記有許多有趣而又不乏技巧的算術(shù)程式,其中記載:今有甲、乙二人,持錢各不知數(shù).甲得乙中半,可滿四十八.乙得甲太半,亦滿四十八,問甲、乙二人原持錢各幾何?譯文:甲,乙兩人各有若干錢.如果甲得到乙所有錢的一半,那么甲共有錢48文,如果乙得到甲所有錢的,那么乙也共有錢48文,問甲,乙二人原來各有多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為8,B是數(shù)軸上位于點(diǎn)A左側(cè)一點(diǎn),且AB=22,動點(diǎn)PA點(diǎn)出發(fā),以每秒5個單位長度的速度沿數(shù)軸向左勻速運(yùn)動,設(shè)運(yùn)動時間為t(t>0)秒.

(1)數(shù)軸上點(diǎn)B表示的數(shù)   ;點(diǎn)P表示的數(shù)   (用含t的代數(shù)式表示)

(2)MAP的中點(diǎn),NBP的中點(diǎn),在點(diǎn)P運(yùn)動的過程中,線段MN的長度是   

(3)動點(diǎn)Q從點(diǎn)B出發(fā),以每秒3個單位長度的速度沿數(shù)軸向右勻速運(yùn)動,若點(diǎn)P、Q同時出發(fā),問多少秒時P、Q之間的距離恰好等于2?

(4)動點(diǎn)Q從點(diǎn)B出發(fā),以每秒3個單位長度的速度沿數(shù)軸向左勻速運(yùn)動,若點(diǎn)P、Q同時出發(fā),問點(diǎn)P運(yùn)動多少秒時追上點(diǎn)Q?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料: 如圖1,在平面直角坐標(biāo)系xOy中,直線y1=ax+b與雙曲線y2= 交于A(1,3)和B(﹣3,﹣1)兩點(diǎn).觀察圖象可知:當(dāng)x=﹣3或1時,y1=y2

(1)通過觀察函數(shù)的圖象,可以得到不等式ax+b> 的解集
(2)參考觀察函數(shù)的圖象方法,解決問題:關(guān)于x的不等式x2+a﹣ <0(a>0)只有一個整數(shù)解,則a的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小組計劃做一批中國結(jié),如果每人做5個,那么比計劃多了9個;如果每人做4個,那么比計劃少15個.該小組共有多少人?計劃做多少個中國結(jié)”?

根據(jù)題意,小明、小紅分別列出了尚不完整的方程如下:

小明:5x□( 。=4x□(  ); 小紅:

(1)根據(jù)小明、小紅所列的方程,其中“□”中是運(yùn)算符號,“( 。中是數(shù)字,請你分別指出未知數(shù)x、y表示的意義.

小明所列的方程中x表示   ,

小紅所列的方程中y表示   ;

(2)請選擇小明、小紅中任意一種方法,完整的解答該題目.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=kx+b經(jīng)過點(diǎn)A(2,0),B(0,1),動點(diǎn)P是x軸正半軸上的動點(diǎn),過點(diǎn)P作PC⊥x軸,交直線AB于點(diǎn)C,以O(shè)A,AC為邊構(gòu)造OACD,設(shè)點(diǎn)P的橫坐標(biāo)為m.

(1)求直線AB的函數(shù)表達(dá)式;
(2)若四邊形OACD恰是菱形,請求出m的值;
(3)在(2)的條件下,y軸的正半軸上是否存在點(diǎn)Q,連結(jié)CQ,使得∠OQC+∠ODC=180°.若存在,直接寫出所有符合條件的點(diǎn)Q的坐標(biāo),若不存在,則說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為發(fā)展學(xué)生的核心素養(yǎng),培養(yǎng)學(xué)生的綜合能力,某學(xué)校計劃開設(shè)四門選修課:樂器、舞蹈、繪畫、書法,學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問卷調(diào)查(每個被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).對調(diào)查結(jié)果進(jìn)行整理,繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給信息解答下列問題:
(1)本次調(diào)查的學(xué)生共有人,在扇形統(tǒng)計圖中,m的值是
(2)將條形統(tǒng)計圖補(bǔ)充完整;
(3)在被調(diào)查的學(xué)生中,選修書法的有2名女同學(xué),其余為男同學(xué),現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表學(xué)校參加某社區(qū)組織的書法活動,請寫出所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】標(biāo)準(zhǔn)的籃球場長28m,寬15m.在某場籃球比賽中,紅隊甲、乙兩名運(yùn)動員分別在A,B處,位置如圖①所示,已知點(diǎn)B到中線EF的距離為6m,點(diǎn)C到中線EF的距離為8m,運(yùn)動員甲在A處搶到籃球后,迅速將球拋向C處,球的平均運(yùn)行速度是m/s,運(yùn)動員乙在B處看到后同時快跑到C處并恰好接住了球(點(diǎn)AB,C在同一直線上).圖②中l1l2分別表示球、運(yùn)動員乙離A處的距離y(m)與從A處拋球后的時間x(s)的關(guān)系圖象

(1)直接寫出ab,c的值;

(2)求運(yùn)動員乙由B處跑向C處的過程中y(m)x(s)的函數(shù)解析式l2;

(3)運(yùn)動員要接住球,一般在球距離自己還有2m遠(yuǎn)時要做接球準(zhǔn)備,求運(yùn)動員乙準(zhǔn)備接此球的時間.

查看答案和解析>>

同步練習(xí)冊答案