【題目】函數(shù) 圖像的大致位置如圖所示,則ab,bc,2a+b, , ,b2-a2 等代數(shù)式的值中,正數(shù)有( )

A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)

【答案】A
【解析】觀察圖形,顯然,a<0,c<0,b>0,
ab<0,bc<0,
<1,得b<-2a , 所以2a+b<0;
a-b+c<0得(a+c2-b2=(a+b+c)(a-b+c)<0;
a+b+c>0得a+b>-c>0,
因此(a+b2-c2>0,|b|>|a|b2-a2>0.
綜上所述,僅有(a+b2-c2 , b2-a2為正數(shù).
答案為:A.
由圖像知,拋物線開(kāi)口向上,a<0,c<0,b>0,ab<0,bc<0,對(duì)稱(chēng)軸x=<1,2a+b<0,( a + c ) 2 b 2 , ( a + b ) 2 c 2 ,b2—a2 可進(jìn)行因式分解變形,分別判定每個(gè)因式的正負(fù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成下面推理過(guò)程:

如圖,已知∠1 ∠2,∠B ∠C,可推得AB∥CD.理由如下:

∵∠1 ∠2(已知),

∠1 ∠CGD______________ _________),

∴∠2 ∠CGD(等量代換).

∴CE∥BF___________________ ________).

∴∠ ∠C__________________________).

∵∠B ∠C(已知),

∴∠ ∠B(等量代換).

∴AB∥CD________________________________).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD中,∠D=∠B90°,AE平分∠DAB,CF平分∠DCB

1)若∠DAB72°,∠2   °,∠3   °;

2)求證:AECF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與實(shí)踐

已知,在RtABC中,ACBC,∠C90°,DAB邊的中點(diǎn),∠EDF90°,∠EDF繞點(diǎn)D旋轉(zhuǎn),它的兩邊分別交AC,CB(或它們的延長(zhǎng)線)于點(diǎn)EF

1)(問(wèn)題發(fā)現(xiàn))

如圖1,當(dāng)∠EDF繞點(diǎn)D旋轉(zhuǎn)到DEAC于點(diǎn)E時(shí)(如圖1),

①證明:△ADE≌△BDF;

②猜想:SDEF+SCEF   SABC

2)(類(lèi)比探究)

如圖2,當(dāng)∠EDF繞點(diǎn)D旋轉(zhuǎn)到DEAC不垂直時(shí),且點(diǎn)E在線段AC上,試判斷SDEF+SCEFSABC的關(guān)系,并給予證明.

3)(拓展延伸)

如圖3,當(dāng)點(diǎn)E在線段AC的延長(zhǎng)線上時(shí),此時(shí)問(wèn)題(2)中的結(jié)論是否成立?若成立,請(qǐng)給予證明;若不成立,SDEF,SCEFSABC又有怎樣的關(guān)系?(寫(xiě)出你的猜想,不需證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“一帶一路”讓中國(guó)和世界更緊密,“中歐鐵路”為了安全起見(jiàn)在某段鐵路兩旁安置了兩座可旋轉(zhuǎn)探照燈.如圖1所示,燈A射線從AM開(kāi)始順時(shí)針旋轉(zhuǎn)至AN便立即回轉(zhuǎn),燈B射線從BP開(kāi)始順時(shí)針旋轉(zhuǎn)至BQ便立即回轉(zhuǎn),兩燈不停交叉照射巡視.若燈A轉(zhuǎn)動(dòng)的速度是每秒2度,燈B轉(zhuǎn)動(dòng)的速度是每秒1度.假定主道路是平行的,即PQMN,且∠BAM:∠BAN=2:1.

(1)填空:∠BAN=_____°;

(2)若燈B射線先轉(zhuǎn)動(dòng)30秒,燈A射線才開(kāi)始轉(zhuǎn)動(dòng),在燈B射線到達(dá)BQ之前,A燈轉(zhuǎn)動(dòng)幾秒,兩燈的光束互相平行?

(3)如圖2,若兩燈同時(shí)轉(zhuǎn)動(dòng),在燈A射線到達(dá)AN之前.若射出的光束交于點(diǎn)C,過(guò)C作ACD交PQ于點(diǎn)D,且ACD=120°,則在轉(zhuǎn)動(dòng)過(guò)程中,請(qǐng)?zhí)骄?/span>BAC與BCD的數(shù)量關(guān)系是否發(fā)生變化?若不變,請(qǐng)求出其數(shù)量關(guān)系;若改變,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)m是整數(shù),關(guān)于x的方程mx2-(m-1)x+1=0有有理根,則方程的根為( )。
A.
B.x=-1
C.
D.有無(wú)數(shù)個(gè)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABCD,CD的右側(cè),BE平分ABC,DE平分ADC,BE、DE所在直線交于點(diǎn)E,ADC=70°.

(1)EDC的度數(shù);

(2)ABC=n°,BED的度數(shù)(用含n的代數(shù)式表示);

(3)將線段BC沿DC方向平移,使得點(diǎn)B在點(diǎn)A的右側(cè),其他條件不變,畫(huà)出圖形并判斷BED的度數(shù)是否改變,若改變,求出它的度數(shù)(用含n的式子表示);若不改變,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,點(diǎn)P在CA的延長(zhǎng)線上,∠CAD=45°.
(Ⅰ)若AB=4,求 的長(zhǎng);
(Ⅱ)若 = ,AD=AP,求證:PD是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形ABCD中,對(duì)角線ACBD相交于O,∠AOB60度,AC10,(1)求矩形較短邊的長(zhǎng).

2)矩形較長(zhǎng)邊的長(zhǎng)

3)矩形的面積

如果把本題改為:矩形ABCD中,對(duì)角線ACBD相交于O,∠AOB60度,AB4,你能求出這個(gè)矩形的面積嗎?試寫(xiě)出解答過(guò)程.

查看答案和解析>>

同步練習(xí)冊(cè)答案