【題目】某地原有沙漠108公頃,綠洲54公頃,為改善生態(tài)環(huán)境,防止沙化現(xiàn)象,當(dāng)?shù)卣畬嵤┝松衬兙G洲”工程,要把部分沙漠改造為綠洲,使綠洲面積占沙漠面積的80%.設(shè)把x公頃沙漠改造為綠洲,則可列方程為( )
A.54+x=80%×108
B.54+x=80%(108-x)
C.54-x=80%(108+x)
D.108-x=80%(54+x)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個等腰三角形的兩邊長分別為方程x2﹣5x+4=0的兩根,則這個等腰三角形的周長為( )
A.6
B.9
C.6或9
D.以上都不正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列事件為必然事件的是( ).
A.畫一個四邊形,其內(nèi)角為180°
B.用長度分別是4,6,9的三條線段能圍成一個三角形
C.NBA球員庫里罰籃兩罰全中
D.在200個白球中放入1個紅球,搖勻后隨機(jī)摸出1球就摸出了紅球
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個正整數(shù)能表示為兩個正整數(shù)的平方差,則稱這個正整數(shù)為“智慧數(shù)”(如3=22-12,16=52-32,則3和16是智慧數(shù)).已知按從小到大的順序構(gòu)成如下數(shù)列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,…則第2 013個“智慧數(shù)”是______.
【答案】2 687
【解析】解析:觀察數(shù)的變化規(guī)律,可知全部“智慧數(shù)”從小到大可按每三個數(shù)分一組,從第2組開始每組的第一個數(shù)都是4的倍數(shù),歸納可得,第n組的第一個數(shù)為4n(n≥2).因為2 013÷3=671,所以第2 013個“智慧數(shù)”是第671組中的第3個數(shù),即為4×671+3=2 687.
點睛:找規(guī)律題需要記憶常見數(shù)列
1,2,3,4……n
1,3,5,7……2n-1
2,4,6,8……2n
2,4,8,16,32……
1,4,9,16,25……
2,6,12,20……n(n+1)
一般題目中的數(shù)列是利用常見數(shù)列變形而來,其中后一項比前一項多一個常數(shù),是等差數(shù)列,列舉找規(guī)律.后一項是前一項的固定倍數(shù),則是等比數(shù)列,列舉找規(guī)律.
【題型】填空題
【結(jié)束】
19
【題目】如圖,鄭某把一塊邊長為a m的正方形的土地租給李某種植,他對李某說:“我把你這塊地的一邊減少5 m,另一邊增加5 m,繼續(xù)租給你,你也沒有吃虧,你看如何”.李某一聽,覺得自己好像沒有吃虧,就答應(yīng)了.同學(xué)們,你們覺得李某有沒有吃虧?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于第二、四象限內(nèi)的A,B兩點,與x軸交于點C,與y軸交于點D,點B的坐標(biāo)是(m,﹣4),連接AO,AO=5,sin∠AOC=.
(1)求反比例函數(shù)的解析式;
(2)連接OB,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,過點A(﹣,0)的兩條直線分別交y軸于B、C兩點,且B、C兩點的縱坐標(biāo)分別是一元二次方程x2﹣2x﹣3=0的兩個根
(1)求線段BC的長度;
(2)試問:直線AC與直線AB是否垂直?請說明理由;
(3)若點D在直線AC上,且DB=DC,求點D的坐標(biāo);
(4)在(3)的條件下,直線BD上是否存在點P,使以A、B、P三點為頂點的三角形是等腰三角形?若存在,請直接寫出P點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只不透明的袋子中裝有白、紅、黑三種不同的球,其中白球有3個,紅球有8個,黑球有m個,這些球除顏色外完全相同.若從袋子中任意取一個球,摸到黑球的可能性最小,則m的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c與x軸交于A,B兩點(點A在點B的左側(cè))與y軸交于點C(0,-3),對稱軸是直線x=1,直線BC與拋物線的對稱軸交于點D,點E為y軸上一動點,CE的垂直平分線交拋物線于P,Q兩點(點P在第三象限)
(1)求拋物線的函數(shù)表達(dá)式和直線BC的函數(shù)表達(dá)式;
(2)當(dāng)△CDE是直角三角形,且∠CDE=90° 時,求出點P的坐標(biāo);
(3)當(dāng)△PBC的面積為時,求點E的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com