【題目】“大美武漢·詩意江城”,某校數(shù)學(xué)興趣小組就“最想去的武漢市旅游景點”隨機調(diào)查了本校3000名學(xué)生中的部分學(xué)生,提供四個景點選擇:A、黃鶴樓;B、東湖海洋世界;C、極地海洋世界;D、歡樂谷.要求每位同學(xué)選擇且只能選擇一個最想去的景點,下面是根據(jù)調(diào)查結(jié)果進行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計圖:

請根據(jù)圖中提供的信息,解答下列問題:

(1) 一共調(diào)查了學(xué)生___________人

(2) 扇形統(tǒng)計圖中表示“最想去的景點D”的扇形圓心角為___________度

(3) 如果A、B、CD四個景點提供給學(xué)生優(yōu)惠門票價格分別為20元、30元、40元、60元,根據(jù)以上的統(tǒng)計估計全校學(xué)生到對應(yīng)的景點所需要門票總價格是多少元?

【答案】1100;(2144;(3129300元.

【解析】

1)由A景點的人數(shù)及其所占百分比可得總?cè)藬?shù);

2)先求出CD的人數(shù),再用360°乘以D人數(shù)所占百分比可得答案;

3)先求出樣本中人均費用,再乘以總?cè)藬?shù)即可得.

1)被調(diào)查的總?cè)藬?shù)為15÷15%=100(人),

2C景點人數(shù)為100×26%=26(人),

D景點人數(shù)為100-15+19+26=40(人),

所以最想去的景點D”的扇形圓心角為360°×=144°,

3)樣本中平均每人的費用為=43.1(元)

則估計全校學(xué)生到對應(yīng)的景點所需要門票總價格是43.1×3000=129300元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A、B分別在反比例函數(shù)y= (k10) y= (k20)的圖象上,連接ABy軸于點P,且點A與點B關(guān)于P成中心對稱.若△AOB的面積為4,則k1-k2=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yx+6x軸、y軸分別交于A,B兩點,將直線l1沿著y軸正方向平移一段距離得到直線l2y軸于點M,且l1l2之間的距離為3,點Cxy)是直線11上的一個動點,過點CAB的垂線CDy軸于點D

1)求直線l2的解析式;

2)當(dāng)C運動到什么位置時,AOD的面積為21,求出此時點C的坐標(biāo);

3)連接AM,將ABM繞著點M旋轉(zhuǎn)得到A'B'M',在平面內(nèi)是否存在一點N.使四邊形AMA'N為矩形?若存在,求出點N的坐標(biāo):若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y軸交于點A

1)直接寫出點A的坐標(biāo);

2)點A、B關(guān)于對稱軸對稱,求點B的坐標(biāo);

3)已知點.若拋物線與線段PQ恰有兩個公共點,結(jié)合函數(shù)圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E為△ABC的外接圓⊙O上一點,OEBC于點D,連接AE并延長至點F,使∠FBC=∠BAC,

1)求證:直線BF是⊙O的切線;

2)若點DOE中點,過點BBGAF于點G,連接DG,⊙O的半徑為,AC=5.

①求∠BAC的度數(shù);

②求線段DG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)拋物線yax22x+2經(jīng)過點E2,2),其頂點為C點.

求拋物線的解析式,并直接寫出C點坐標(biāo);

將直線yx沿y軸向上平移bb0)個單位長度交拋物線于AB兩點,若∠ACB90°,求b的值.

2)是否存在點D1m),使拋物線yx2x+上任意一點Px軸的距離等于P點到點D的距離,若存在,請求點D的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,E為⊙O上一點,C為弧BE的中點,過點CAE的垂線,交AE的延長線于點D

1)求證:CD是⊙O的切線;

2)連接EC,若AB10,AC8,求ACE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交

于點A(1,4)、點B(-4,n).

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求△OAB的面積;

(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】興發(fā)服裝店老板用4500元購進一批某款T恤衫,由于深受顧客喜愛,很快售完,老板又用4950元購進第二批該款式T恤衫,所購數(shù)量與第一批相同,但每件進價比第一批多了9元.

1)第一批該款式T恤衫每件進價是多少元?

2)老板以每件120元的價格銷售該款式T恤衫,當(dāng)?shù)诙?/span>T恤衫售出時,出現(xiàn)了滯銷,于是決定降價促銷,若要使第二批的銷售利潤不低于650元,剩余的T恤衫每件售價至少要多少元?(利潤=售價進價)

查看答案和解析>>

同步練習(xí)冊答案