【題目】以直線AB上一點(diǎn)O為端點(diǎn)作射線OC使∠BOC=60°,將一個直角三角形的直角頂點(diǎn)放在O(注:∠DOE=90°)

(1)如圖1,若直角三角板DOE的一邊OD放在射線OB上,則∠COE=______;

(2)如圖2,將直角三角板DOE繞點(diǎn)O逆時針方向轉(zhuǎn)動到某個位置,若OE恰好平分∠AOC,則∠BOD=______;

(3)如圖3,將三角板DOE繞點(diǎn)O逆時針轉(zhuǎn)動到某個位置時,若恰好∠COD=AOE,求∠BOD的度數(shù).

【答案】(1)30°;(2)COD=30°;(3)BOD的度數(shù)為65°

【解析】

(1)代入∠BOE=COE+COB求出即可;

(2)求出∠AOE=COE,根據(jù)∠DOE=90°求出∠AOE+DOB=90°,∠COE+COD=90°,推出∠COD=DOB,即可得出答案;

(3)根據(jù)平角等于180°求出即可.

(1)∵∠BOE=COE+COB=90°,

又∵∠COB=60°,

∴∠COE=30°,

故答案為:30°

(2)OE平分∠AOC,

∴∠COE=AOE=COA,

∵∠EOD=90°,

∴∠AOE+DOB=90°,∠COE+COD=90°

∴∠COD=DOB=BOC=30°;

(3)設(shè)∠COD=x,則∠AOE=5x,

∵∠AOE+DOE+COD+BOC=180°,∠DOE=90°,∠BOC=60°,

5x+90°+x+60°=180°,

解得x=5°

即∠COD=5°,

∴∠BOD=COD+BOC=5°+60°=65°,

∴∠BOD的度數(shù)為65°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場為了吸引顧客,設(shè)計(jì)了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標(biāo)有“0元”、“10元”、“20元”和“30元”的字樣.規(guī)定:顧客在本商場同一日內(nèi),每消費(fèi)滿200元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回),商場根據(jù)兩小球所標(biāo)金額的和返還相應(yīng)價格購物券,可以重新在本商場消費(fèi),某顧客剛好消費(fèi)200元.

(1)該顧客至少可得到_____元購物券,至多可得到_______元購物券;

(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于30元的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,點(diǎn)AB的坐標(biāo)分別為(1,4)和(30),點(diǎn)Cy軸上的一個動點(diǎn),且A、BC三點(diǎn)不在同一條直線上,當(dāng)ABC的周長最小時,點(diǎn)C的坐標(biāo)是(

A. 0,0); B. 0,1); C. 0,2); D. 03).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,二次函數(shù)圖象與軸交于A(-3,0),B(1,0)兩點(diǎn),與y軸交于點(diǎn)C.

1)求這個二次函數(shù)的解析式;

2)點(diǎn)P是直線AC上方的拋物線上一動點(diǎn),是否存在點(diǎn)P,使ACP的面積最大?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由;

3)點(diǎn)Q是直線AC上方的拋物線上一動點(diǎn),過點(diǎn)QQE垂直于軸,垂足為E.是否存在點(diǎn)Q,使以點(diǎn)B、QE為頂點(diǎn)的三角形與AOC相似?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】純電動汽車是指以車載電源為動力,用電機(jī)驅(qū)動車輪行駛,符合道路交通、安全法規(guī)各項(xiàng)要求的車輛.車載電源一般為二次電池,從大的角度講,純電動汽車可以擺脫汽車對石油這單一能源的依賴,降低排放染和改善空氣質(zhì)量.從小的角度講,純電動車較之普通燃油車最大的優(yōu)勢就是使用成本大幅降低,龍先生欲購買一輛汽車,他比較了兩種車的成本請你幫他計(jì)算,大約行駛( )公里以上購買燃油汽車劃算(精確到個位).

項(xiàng)目

電動汽車

燃油汽車

車價(元)

購置稅

上牌費(fèi)

百公里行駛費(fèi)用(元)

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD的四個頂點(diǎn)分別在反比例函數(shù)(x>0,0<m<n)的圖象上,對角線BD//y軸,且BD⊥AC于點(diǎn)P.已知點(diǎn)B的橫坐標(biāo)為4.

(1)當(dāng)m=4,n=20時.

①若點(diǎn)P的縱坐標(biāo)為2,求直線AB的函數(shù)表達(dá)式.

②若點(diǎn)P是BD的中點(diǎn),試判斷四邊形ABCD的形狀,并說明理由.

(2)四邊形ABCD能否成為正方形?若能,求此時m,n之間的數(shù)量關(guān)系;若不能,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有這樣一個問題:探究函數(shù)和函數(shù)的圖象之間的關(guān)系,小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),通過畫出兩個函數(shù)圖象后,再觀察研究.

下面是小東的探究過程,請補(bǔ)充完成:

)下表是的幾組對應(yīng)值.

下表是的幾組對應(yīng)值

請補(bǔ)全表格__________

)如下圖,在平面直角坐標(biāo)系中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn),請根據(jù)描出的點(diǎn),在同一坐標(biāo)系中畫出和函數(shù)的圖象

)觀察這兩個函數(shù)的圖象,發(fā)現(xiàn)這兩個函數(shù)圖象是關(guān)于直線成軸對稱的,請畫出這條直線.

)已知,借助函數(shù)圖象比較 , 的大。ㄓ號連接).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線y1=ax2+bx+ca≠0)圖象的一部分,拋物線的頂點(diǎn)坐標(biāo)A13),與x軸的一個交點(diǎn)B4,0),直線y2=mx+nm≠0)與拋物線交于A,B兩點(diǎn),下列結(jié)論:

①2a+b=0;②abc0;方程ax2+bx+c=3有兩個相等的實(shí)數(shù)根;拋物線與x軸的另一個交點(diǎn)是(-10);當(dāng)1x4時,有y2y1,

其中正確的是( )

A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用同樣規(guī)格的黑白兩色正方形瓷磚鋪設(shè)長方形地面,觀察下列圖形,探究并解答問題:

(1)在第4個圖中,共有白色瓷磚______塊;在第個圖中,共有白色瓷磚_____塊;

(2)試用含的代數(shù)式表示在第個圖中共有瓷磚的塊數(shù);

(3)如果每塊黑瓷磚35元,每塊白瓷磚50元,當(dāng)時,求鋪設(shè)長方形地面共需花多少錢購買瓷磚?

查看答案和解析>>

同步練習(xí)冊答案