【題目】如圖,ABACCD、BE分別是△ABC的角平分線,AGBC,AGBG,下列結(jié)論:①∠BAG2ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB135°,其中正確的結(jié)論有( 。﹤(gè)

A.1B.2C.3D.4

【答案】C

【解析】

由已知條件可知∠ABC+ACB=90°,又因?yàn)?/span>CD、BE分別是ABC的角平分線,所以得到∠FBC+FCB=45°,所以求出∠CFB=135°;有平行線的性質(zhì)可得到:∠ABG=ACB,∠BAG=2ABF.所以可知選項(xiàng)①③④正確.

ABAC

∴∠BAC90°,

∵∠BAC+ABC+ACB180°

∴∠ABC+ACB90°

CD、BE分別是△ABC的角平分線,

2FBC+2FCB90°

∴∠FBC+FCB45°

∴∠BFC135°故④正確.

AGBC,

∴∠BAG=∠ABC

∵∠ABC2ABF

∴∠BAG2ABF 故①正確.

ABAC,

∴∠ABC+ACB90°,

AGBG

∴∠ABG+GAB90°

∵∠BAG=∠ABC,

∴∠ABG=∠ACB 故③正確.

故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為了測(cè)量某建筑物CD的高度,先在地面上用測(cè)角儀自A處測(cè)得建筑物頂部的仰角是30°,然后在水平地面上向建筑物前進(jìn)了100 m,此時(shí)自B處測(cè)得建筑物頂部的仰部角是45°已知測(cè)角儀的高度是15 m,請(qǐng)你計(jì)算出該建筑物的高度.(取≈1732,結(jié)果精確到1 m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】你知道數(shù)學(xué)中的整體思想嗎?解題中,若把注意力和著眼點(diǎn)放在問(wèn)題的整體上,多方位思考、聯(lián)想、探究,進(jìn)行整體思考、整體加減,能使問(wèn)題迅速獲解.

例題:已知x2+xy=4xy+y2=-1.求代數(shù)式x2-y2的值.

解:將兩式相減,得(x2+xy)-(xy+y2)=4-(-1),即x2-y2=5;請(qǐng)用整體思想解答下列問(wèn)題:

1)在例題的基礎(chǔ)上求(x+y)2的值;

2)若關(guān)于x、y的二元一次方程組的解也是二元一次方程x+y=6的解,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】暴雨過(guò)后,某地遭遇山體滑坡,武警總隊(duì)派出一隊(duì)武警戰(zhàn)士前往搶險(xiǎn). 半小時(shí)后,第二隊(duì)前去支援,平均速度是第一隊(duì)的1.5倍,結(jié)果兩隊(duì)同時(shí)到達(dá).已知搶險(xiǎn)隊(duì)的出發(fā)地與災(zāi)區(qū)的距離為90千米,兩隊(duì)所行路線相同,問(wèn)兩隊(duì)的平均速度分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線ABCD,點(diǎn)P在兩平行線之間,點(diǎn)E. F分別在AB、CD上,連接PEPF.嘗試探究并解答:

(1)若圖1中∠1=36°,2=63°,則∠3=___

(2)探究圖1中∠1,∠2與∠3之間的數(shù)量關(guān)系,并說(shuō)明理由;

(3)如圖2所示,1與∠3的平分線交于點(diǎn)P`,若∠2=α,試求∠EP`F的度數(shù)(用含α的代數(shù)式表示)

(4)如圖3所示,在圖2的基礎(chǔ)上,若∠BEP與∠DFP的平分線交于點(diǎn)P,BEP與∠DFP的平分線交于點(diǎn)PBEP 與∠DFP的平分線交于點(diǎn)P,且∠2=α,直接寫出∠EPF的度數(shù)(用含α的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線yax22axcy軸交于C點(diǎn),與x軸交于A、B兩點(diǎn),點(diǎn)A的坐標(biāo)是(-1,0),O是坐標(biāo)原點(diǎn),且OC=3OA

1)求拋物線的函數(shù)表達(dá)式;

2)直接寫出直線BC的函數(shù)表達(dá)式;

3)如圖1Dy軸的負(fù)半軸上的一點(diǎn),且OD=2,以OD為邊作正方形ODEF.將正方形ODEF以每秒1個(gè)單位的速度沿x軸的正方向移動(dòng),在運(yùn)動(dòng)過(guò)程中,設(shè)正方形ODEF△OBC重疊部分的面積為s,運(yùn)動(dòng)的時(shí)間為t秒(0t≤2).

求:①st之間的函數(shù)關(guān)系式;

在運(yùn)動(dòng)過(guò)程中,s是否存在最大值?如果存在,直接寫出這個(gè)最大值;如果不存在,請(qǐng)說(shuō)明理由.

4)如圖2,點(diǎn)P1,k)在直線BC上,點(diǎn)Mx軸上,點(diǎn)N在拋物線上,是否存在以A、M、NP為頂點(diǎn)的平行四邊形?若存在,請(qǐng)直接寫出M點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)組織植樹(shù)活動(dòng),按年級(jí)將七、八、九年級(jí)學(xué)生分成三個(gè)植樹(shù)隊(duì),七年級(jí)植樹(shù)x棵,八年級(jí)種的數(shù)比七年級(jí)種的數(shù)的2倍少26棵,九年級(jí)種的樹(shù)比八年級(jí)種的樹(shù)的一半多42棵.

(1)請(qǐng)用含x的式子表示三個(gè)隊(duì)共種樹(shù)多少棵.

(2)若這三個(gè)隊(duì)共種樹(shù)423棵,請(qǐng)你求出這三隊(duì)各種了多少棵樹(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1D是等邊△ABC外一點(diǎn),且ADAC,連接BD,∠CAD的角平分交BDE

1)求證:∠ABD=∠D

2)求∠AEB的度數(shù);

3)△ABC 的中線AFBDG(如圖2),若BGDE,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將矩形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)αα360°),得到矩形AEFG

1)如圖,當(dāng)點(diǎn)EBD上時(shí).求證:FDCD;

2)當(dāng)α為何值時(shí),GCGB?畫出圖形,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案