【題目】我們定義:兩邊平方和等于第三邊平方的2倍的三角形叫做奇異三角形.
例如:某三角形三邊長分別是2,4,,因?yàn)?/span>,所以這個三角形是奇異三角形.
(1)根據(jù)定義:“等邊三角形是奇異三角形”這個命題是______命題(填“真”或“假命題”);
(2)在中,,,,,且,若是奇異三角形,求;
(3)如圖,以為斜邊分別在的兩側(cè)作直角三角形,且,若四邊形內(nèi)存在點(diǎn),使得,.
①求證:是奇異三角形;
②當(dāng)是直角三角形時,求的度數(shù).
【答案】(1)真;(2);(3)①證明見解析;②或.
【解析】
(1)設(shè)等邊三角形的邊長為a,則a2+a2=2a2,即可得出結(jié)論;
(2)由勾股定理得出a2+b2=c2①,由Rt△ABC是奇異三角形,且b>a,得出a2+c2=2b2②,由①②得出b=a,c=a,即可得出結(jié)論;
(3)①由勾股定理得出AC2+BC2=AB2,AD2+BD2=AB2,由已知得出2AD2=AB2,AC2+CE2=2AE2,即可得出△ACE是奇異三角形;
②由△ACE是奇異三角形,得出AC2+CE2=2AE2,分兩種情況,由直角三角形和奇異三角形的性質(zhì)即可得出答案.
(1)解:“等邊三角形是奇異三角形”這個命題是真命題,理由如下:
設(shè)等邊三角形的一邊為,則,
∴符合奇異三角形”的定義.
(2)解:∵,則①,
∵是奇異三角形,且,
∴②,
由①②得:,,
∴.
(3)①證明:∵,
∴,,
∵,
∴,
∵,,
∴,
∴是奇異三角形.
②由①可得是奇異三角形,
∴,
當(dāng)是直角三角形時,
由(2)得:或,
當(dāng)時,,
即,
∵,
∴,
∵,,
∴,
∴.
當(dāng)時,,
即,
∵,
∴°,
∵,,
∴,
∴,
∴或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn), 與y軸交于C(0,3),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0))。點(diǎn)P是拋物線上一個動點(diǎn),且在直線BC的上方.
(1)求這個二次函數(shù)的表達(dá)式.
(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形,那么是否存在點(diǎn)P,使四邊形為菱形?若存在,請求出此時點(diǎn)P的坐標(biāo);若不存在,請說明理由.
(3)當(dāng)點(diǎn)P運(yùn)動到什么位置時,使△BPC的面積最大,求出點(diǎn)P的坐標(biāo)和△BPC的面積最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖點(diǎn)A(1,1),B(2,﹣3),點(diǎn)P為x軸上一點(diǎn),當(dāng)|PA﹣PB|最大時,點(diǎn)P的坐標(biāo)為( 。
A. (﹣1,0) B. (,0) C. (,0) D. (1,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b與反比例函數(shù)y=(m≠0)的圖象交于點(diǎn)A(3,1),且過點(diǎn)B(0,﹣2).
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)如果點(diǎn)P是x軸上一點(diǎn),且△ABP的面積是3,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠APB=30°,圓心在PB上的⊙O的半徑為1cm,OP=3cm,若⊙O沿BP方向平移,當(dāng)⊙O與PA相切時,圓心O平移的距離為_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是△ABC的內(nèi)心,AE的延長線與△ABC的外接圓相交于點(diǎn)D.
(1)若∠BAC=70°,求∠CBD的度數(shù);
(2)求證:DE=DB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“垃圾不落地,城市更美麗”.某中學(xué)為了了解七年級學(xué)生對這一倡議的落實(shí)情況,學(xué)校安排政教處在七年級學(xué)生中隨機(jī)抽取了部分學(xué)生,并針對學(xué)生“是否隨手丟垃圾”這一情況進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)結(jié)果為:A為從不隨手丟垃圾;B為偶爾隨手丟垃圾;C為經(jīng)常隨手丟垃圾三項(xiàng).要求每位被調(diào)查的學(xué)生必須從以上三項(xiàng)中選一項(xiàng)且只能選一項(xiàng).現(xiàn)將調(diào)查結(jié)果繪制成以下來不辜負(fù)不完整的統(tǒng)計(jì)圖.
請你根據(jù)以上信息,解答下列問題:
(1)補(bǔ)全上面的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;
(2)所抽取學(xué)生“是否隨手丟垃圾”情況的眾數(shù)是 ;
(3)若該校七年級共有1500名學(xué)生,請你估計(jì)該年級學(xué)生中“經(jīng)常隨手丟垃圾”的學(xué)生約有多少人?談?wù)勀愕目捶ǎ?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,D是BC的中點(diǎn),DE⊥BC,CE//AD,若AC=2,CE=4,則四邊形ACEB的周長為 ▲ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)課上,老師提出一個問題“用直尺和圓規(guī)作一個矩形”.
小華的做法如下:
如圖1,任取一點(diǎn)O,過點(diǎn)O作直線l1,l2;如圖2,以O為圓心,任意長為半徑作圓,與直線l1,l2分別相交于點(diǎn)A、C,B、D;如圖3,連接AB、BC、CD、DA四邊形ABCD即為所求作的矩形.
老師說:“小華的作法正確”.
請回答:小華的作圖依據(jù)是______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com