【題目】已知,在PAB中,PAPB,經(jīng)過A、B作⊙O

1)如圖1,連接PO,求證:PO平分∠APB;

2)如圖2,點P在⊙O上,PAAB2E是⊙O上一點,連接AEBE.求tanAEB的值;

3)如圖3,在(2)的條件下,AE經(jīng)過圓心O,AEPB于點F,過FFGBE于點GEF+BG14,求線段OF的長度.

【答案】1)見解析;(2;(3

【解析】

(1) 連接OA,OB,證明OP是AB的垂直平分線即可;

(2) 延長PO,交ABH,過點AAMPBM,由PH垂直平分AB PAAB2,設(shè)AB2,則APBP,AHBH1,然后根據(jù)勾股定理和銳角的三角函數(shù)進行解答即可;

(3) 連接PO并延長,交AB于點H,由PH垂直平分AB,可得AE為直徑,設(shè)設(shè)FG3x,則EG4x,EF5x,再運用勾股定理和相似三角形知識進行解答即可.

1)證明:連接OA,OB

OAOB,

又∵PAPB,

PO垂直平分AB,

PO平分∠APB;

2)解:延長PO,交ABH,過點AAMPBM

由(1)知PH垂直平分AB,

PAAB2

∴設(shè)AB2,則APBP,AHBH1

∴在RtPAH中,

PH3,

SPABABPHPBAM

2×3×AM,

AM,

RtPAM中,

PM,

tanAPM:==,

∵∠AEB=∠APM,

tanAEB;

3)連接PO并延長,交AB于點H,由(1)知,PH垂直平分AB,

AE為直徑,RtEFG中,tanFEG,

∴設(shè)FG3x,則EG4xEF5x,

EF+BG14,

BG145x,

∴∠ABE90°=∠AHP=∠PHB,

PHEB

∴∠HPB=∠GBF,

∴△HPB∽△GBF,

,

解得,x1

EF5,BEBG+EG9+413,

ABBE,

AE ,

OEAE,

OFOEEF5

∴線段OF的長度為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩運動員的射擊成績(靶心為10環(huán))統(tǒng)計如下表(不完全):

運動員 \ 環(huán)數(shù) \ 次數(shù)

1

2

3

4

5

10

8

9

10

8

10

9

9

a

b

某同學(xué)計算出了甲的成績平均數(shù)是9,方差是 [(109)2(89)2(99)2(109)2(89)2]0.8,

請作答:

1)若甲、乙射擊成績平均數(shù)都一樣,則ab   

2)在(1)的條件下,當(dāng)甲比乙的成績較穩(wěn)定時,請列舉出a,b的所有可能取值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在RtABC中,∠ACB90°AC6cm.P、QBC邊上兩個動點(Q在點P右邊)PQ2cm,點P從點C出發(fā),沿CB向右運動,運動時間為t.5s后點Q到達(dá)點B,點PQ停止運動,過點QQDBCAB于點D,連接AP,設(shè)ACPBQD的面積和為S(cm)St的函數(shù)圖像如圖2所示.

(1)1BC cm,點P運動的速度為 cm/s

(2)t為何值時,面積和S最小,并求出最小值;

(3)連接PD,以點P為圓心線段PD的長為半徑作⊙P,當(dāng)⊙P的邊相切時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第x1≤x≤90)天的售價與銷售量的相關(guān)信息如下表:

時間x(天)

1≤x50

50≤x≤90

售價(元/件)

x40

90

每天銷量(件)

2002x

已知該商品的進價為每件30元,設(shè)銷售該商品的每天利潤為y[

1)求出yx的函數(shù)關(guān)系式;

2)問銷售該商品第幾天時,當(dāng)天銷售利潤最大,最大利潤是多少?

3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個工程隊分別同時開挖兩段河渠,所挖河渠的長度y(m)與挖掘時間x(h)之間的關(guān)系如圖所示.根據(jù)圖象所提供的信息有:①甲隊挖掘30m時,用了3h;②挖掘6h時甲隊比乙隊多挖了10m;③乙隊的挖掘速度總是小于甲隊;④開挖后甲、乙兩隊所挖河渠長度相等時,x=4.其中一定正確的有( 。

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七年級一班和二班各派出10名學(xué)生參加一分鐘跳繩比賽,成績?nèi)缦卤恚?/span>

跳繩成績(個)

132

133

134

135

136

137

一班人數(shù)(人)

1

0

1

5

2

1

二班人數(shù)(人)

0

1

4

1

2

2

1)兩個班級跳繩比賽成績的眾數(shù)、中位數(shù)、平均數(shù)、方差如下表:

眾數(shù)

中位數(shù)

平均數(shù)

方差

一班

a

135

135

c

二班

134

b

135

1.8

表中數(shù)據(jù)a b ,c ;

2)請用所學(xué)的統(tǒng)計知識,從兩個角度比較兩個班跳繩比賽的成績.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,將直尺擺放在三角板上,使直尺與三角板的邊分別交于點D、EF、G,∠CGD42°,將直尺向下平移,使直尺的邊緣通過點B,交AC于點H,如圖②所示.

1)∠CBH的大小為   度.

2)點H、B的讀數(shù)分別為413.4,求BC的長.(結(jié)果精確到0.01

(參考數(shù)據(jù):sin42°0.67cos42°0.74,tan42°0.90

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司計劃在某地區(qū)銷售一款5G產(chǎn)品,根據(jù)市場分析,該產(chǎn)品的銷售價格將隨銷售周期的變化而變化.該產(chǎn)品在第x周(x為正整數(shù),且1≤x≤8)個銷售周期的銷售價格為y元,yx之間滿足如圖所示的一次函數(shù).

1)求yx之間的函數(shù)關(guān)系;

2)產(chǎn)品在第x個銷售周期的銷售數(shù)量為p萬臺,px之間滿足:.已知在某個銷售周期的銷售收入是16000萬元,求此時該產(chǎn)品的銷售價格是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線x軸交于A、B兩點,與軸交于點,連接、

1)求拋物線的函數(shù)表達(dá)式;

2)拋物線的對稱軸與x軸交于點D,連接,點E為第三象限拋物線上的一動點,,直線與拋物線交于點F,設(shè)直線的表達(dá)式為

①如圖①,直線與拋物線對稱軸交于點G,若,求k、b的值;

②如圖②,直線y軸交于點M,與直線交于點H,若,求b的值.

查看答案和解析>>

同步練習(xí)冊答案