【題目】下面是“作三角形一邊上的高”的尺規(guī)作圖過程.
已知:△ABC.
求作:△ABC的邊BC上的高AD.
作法:如圖2,
(1)分別以點(diǎn)B和點(diǎn)C為圓心,BA,CA為半徑作弧,兩弧相交于點(diǎn)E;
(2)作直線AE交BC邊于點(diǎn)D.所以線段AD就是所求作的高.
請回答:該尺規(guī)作圖的依據(jù)是______.
【答案】到一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上;三角形的高的定義;兩點(diǎn)確定一條直線
【解析】
利用作法和線段垂直平分線定理的逆定理可得到BC垂直平分AE,然后根據(jù)三角形高的定義得到AD為高
解:由作法得BC垂直平分AE,
所以該尺規(guī)作圖的依據(jù)為到一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上;三角形的高的定義;兩點(diǎn)確定一條直線.
故答案為到一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上;三角形的高的定義;兩點(diǎn)確定一條直線.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料,完成相應(yīng)的任務(wù):
(1)小明在研究命題①時(shí),在圖1的正方形網(wǎng)格中畫出兩個(gè)符合條件的四邊形,由此判斷命題①是 命題(填“真”或“假”);
(2)小彬經(jīng)過探究發(fā)現(xiàn)命題②是真命題,請你結(jié)合圖2證明這一命題;
(3)小穎經(jīng)過探究又提出了一個(gè)新的命題:“若AB=A′B′,BC=B′C′,CD=C′D' , ,則四邊形ABCD≌四邊形A′B′C′D′,請?jiān)跈M線上填寫兩個(gè)關(guān)于“角”的條件,使該命題為真命題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為8,點(diǎn)E在邊AD上,點(diǎn)F在CD上,DF=,tan∠DEF=.
(1)求AE的長;
(2)求證:BE⊥EF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,函數(shù)(x>0)的圖象與直線l1:y=x+b交于點(diǎn)A(3,a-2).
(1)求a,b的值;
(2)直線l2:y=-x+m與x軸交于點(diǎn)B,與直線l1交于點(diǎn)C,若S△ABC≥6,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AE⊥BC于點(diǎn)E,延長BC至點(diǎn)F使CF=BE,連結(jié)AF,DE,DF.
(1)求證:四邊形AEFD是矩形;
(2)若AB=6,DE=8,BF=10,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠BAC=90°,AB<AC,M是BC邊的中點(diǎn),MN⊥BC交AC于點(diǎn)N,動點(diǎn)P在線段BA上以每秒cm的速度由點(diǎn)B向點(diǎn)A運(yùn)動.同時(shí),動點(diǎn)Q在線段AC上由點(diǎn)N向點(diǎn)C運(yùn)動,且始終保持MQ⊥MP.一個(gè)點(diǎn)到終點(diǎn)時(shí)兩個(gè)點(diǎn)同時(shí)停止運(yùn)動,設(shè)運(yùn)動的時(shí)間為t秒(t>0).
(1)求證:△PBM∽△QNM.
(2)若∠ABC=60°,AB=4cm,
①求動點(diǎn)Q的運(yùn)動速度;
②設(shè)△APQ的面積為S(cm2),求S與t的等量關(guān)系式(不必寫出t的取值范圍).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)活動課上,老師提出了一個(gè)問題:把一副三角尺如圖擺放,直角三角尺的兩條直角邊分別垂直或平行,60°角的頂點(diǎn)在另一個(gè)三角尺的斜邊上移動,在這個(gè)運(yùn)動過程中,有哪些變量,能研究它們之間的關(guān)系嗎?
小林選擇了其中一對變量,根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對它們之間的關(guān)系進(jìn)行了探究.
下面是小林的探究過程,請補(bǔ)充完整:
(1)畫出幾何圖形,明確條件和探究對象;
如圖2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是線段AB上一動點(diǎn),射線DE⊥BC于點(diǎn)E,∠EDF=60°,射線DF與射線AC交于點(diǎn)F.設(shè)B,E兩點(diǎn)間的距離為xcm,E,F兩點(diǎn)間的距離為ycm.
(2)通過取點(diǎn)、畫圖、測量,得到了x與y的幾組值,如下表:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y/cm | 6.9 | 5.3 | 4.0 | 3.3 | 4.5 | 6 |
(說明:補(bǔ)全表格時(shí)相關(guān)數(shù)據(jù)保留一位小數(shù))
(3)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(4)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)△DEF為等邊三角形時(shí),BE的長度約為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,河的兩岸l1與l2互相平行,A、B是l1上的兩點(diǎn),C、D是l2上的兩點(diǎn),某同學(xué)在A處測得∠CAB=90°,∠DAB=30°,再沿AB方向走20米到達(dá)點(diǎn)E(即AE=20),測得∠DEB=60°.求:C,D兩點(diǎn)間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,甲、乙兩車沿直路同向行駛,車速分別為20 m/s和v(m/s),起初甲車在乙 車前a (m)處,兩車同時(shí)出發(fā),當(dāng)乙車追上甲車時(shí),兩車都停止行駛.設(shè)x(s)后兩車相距y (m),y與x的函數(shù)關(guān)系如圖2所示.有以下結(jié)論:
①圖1中a的值為500;
②乙車的速度為35 m/s;
③圖1中線段EF應(yīng)表示為;
④圖2中函數(shù)圖象與x軸交點(diǎn)的橫坐標(biāo)為100.
其中所有的正確結(jié)論是( )
A. ①④ B. ②③
C. ①②④ D. ①③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com