數(shù)學(xué)英語物理化學(xué) 生物地理
數(shù)學(xué)英語已回答習(xí)題未回答習(xí)題題目匯總試卷匯總
【題目】如圖,在△ABC中,AB=AC,BG⊥AC于G,DE⊥AB于E,DF⊥AC于F.
(1)在圖(1)中,D是BC邊上的中點,判斷DE+DF和BG的關(guān)系,并說明理由.
(2)在圖(2)中,D是線段BC上的任意一點,DE+DF和BG的關(guān)系是否仍然成立?如果成立,證明你的結(jié)論;如果不成立,請說明理由.
(3)在圖(3)中,D是線段BC延長線上的點,探究DE、DF與BG的關(guān)系.(不要求證明,直接寫出結(jié)果)
【答案】(1)結(jié)論:DE+DF=BG,理由見解析;(2)見解析
【解析】試題分析: 連接根據(jù)即可求出.
同
根據(jù)即可求出.
試題解析:(1)結(jié)論:
理由:連結(jié)AD.則
即
∴
(2)證明:如圖2,連結(jié)AD.
則
(3)
證明:如圖3,
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,B是線段AD上一動點,沿A→D→A以 2 cm/s的速度往返運動1次,C是線段BD的中點,AD=10 cm,設(shè)點B的運動時間為t秒(0≤t≤10).
(1)當(dāng)t=2時,
①AB=____cm;
②求線段CD的長度;
(2)用含t的代數(shù)式表示運動過程中AB的長;
(3)在運動過程中,若AB的中點為E,則EC的長是否變化?若不變,求出EC的長;若發(fā)生變化,請說明理由.
【題目】某中學(xué)九年級學(xué)生開展測量物體高度的實踐活動,他們要測量學(xué)校一幢教學(xué)樓的高度,如圖,他們先在點C測得教學(xué)樓AB的頂點A的仰角為30°,然后向教學(xué)樓前進(jìn)20米到達(dá)點D,又測得點A的仰角為45°,請根據(jù)這些數(shù)據(jù),求這幢教學(xué)樓的高度.(最后結(jié)果精確到1米,參考數(shù)據(jù) ≈1.732)
【題目】某公司擬為貧困山區(qū)建一所希望小學(xué),甲、乙兩個工程隊提交了投標(biāo)方案,若獨立完成該項目,則甲工程隊所用時間是乙工程隊的1.5倍;若甲、乙兩隊合作完成該項目,則共需72天.
(1)甲、乙兩隊單獨完成建校工程各需多少天?
(2)若由甲工程隊單獨施工,平均每天的費用為0.8萬元,為了縮短工期,該公司選擇了乙工程隊,但要求其施工的總費用不能超過甲工程隊,求乙工程隊平均每天的施工費用最多為多少萬元?
【題目】如圖,點A,B在反比例函數(shù)y= 的圖象上,過點A,B作x軸的垂線,垂足分別是M,N,射線AB交x軸于點C,若OM=MN=NC,四邊形AMNB的面積是3,則k的值為( ) A.2B.4C.﹣2D.﹣4
【題目】如圖,AD∥BC,AF平分∠BAD交BC于點F,BE平分∠ABC交AD于點E.求證: (1)△ABF是等腰三角形;(2)四邊形ABFE是菱形.
【題目】已知△ABC是邊長為4的等邊三角形,BC在x軸上,點D為BC的中點,點A在第一象限內(nèi),AB與y軸的正半軸交與點E,已知點B(﹣1,0).(1)點A的坐標(biāo): , 點E的坐標(biāo):;(2)若二次函數(shù)y=﹣ x2+bx+c過點A、E,求此二次函數(shù)的解析式;(3)P是AC上的一個動點(P與點A、C不重合)連結(jié)PB、PD,設(shè)l是△PBD的周長,當(dāng)l取最小值時,求點P的坐標(biāo)及l(fā)的最小值并判斷此時點P是否在(2)中所求的拋物線上,請充分說明你的判斷理由.
【題目】如圖,在邊長為2 的正方形ABCD中,點E為AD邊的中點,將△ABE沿BE翻折,使點A落在點A′處,作射線EA′,交BC的延長線于點F,則CF= .
【題目】如圖,點P是菱形ABCD的對角線BD上一點,連接CP并延長交AD于E,交BA的延長線于點F.(1)求證:△APD≌△CPD;(2)求證:△APE∽△FPA;(3)猜想:線段PC,PE,PF之間存在什么關(guān)系?并說明理由.
百度致信 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)