【題目】同學(xué)們都知道表示5與(-2)之差的絕對(duì)值,也可理解為5與-2兩數(shù)在數(shù)軸上所對(duì)的兩點(diǎn)之間的距離,試探索:
(1) 求= ;
(2) 使得=3成立的數(shù)是 ;
(3) 由以上探索猜想,對(duì)于任何有理數(shù)x,則最小值是 ;
(4)由以上探索猜想,使得的成立的整數(shù)x是
【答案】(1)7;(2)-8、-2;(3)3;(4).
【解析】
(1)5與兩數(shù)在數(shù)軸上所對(duì)的兩點(diǎn)之間的距離為;
(2)在數(shù)軸上,找到距離等于3的點(diǎn)即可求解;
(3)把理解為:在數(shù)軸上表示到3和6的距離之和,求出表示3和6的兩點(diǎn)之間的距離即可;
(4)分三種情況討論,利用絕對(duì)值方程求解即可.
解:(1);
(2)=3,即:=3;
到-5距離等于3點(diǎn)有兩個(gè),分別為-8、-2,
所以使得=3成立的數(shù)是-8、-2.
(3)有最小值.最小值為3,
理由是:∵丨x-3|+|x-6丨理解為:在數(shù)軸上表示x到3和6的距離之和,
∴當(dāng)x在3與6之間的線(xiàn)段上(即3≤x≤6)時(shí):
即丨x-3|+|x-6丨的值有最小值,最小值為6-3=3.
(4)式子理解為:在數(shù)軸上,某點(diǎn)到所對(duì)應(yīng)的點(diǎn)的距離和到6所對(duì)應(yīng)的點(diǎn)的距離之和為7,
當(dāng)x>6時(shí),,解得:,
當(dāng)3≤x≤6時(shí),≠7,
當(dāng)x<3時(shí),,解得:,
所以滿(mǎn)足條件的整數(shù)可為.
故答案為:(1)7;(2)-8、-2;(3)3;(4).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)九(1)班數(shù)學(xué)興趣小組經(jīng)過(guò)市場(chǎng)調(diào)查,整理出某種商品在第x(1≤x≤90)天的售價(jià)與銷(xiāo)量的相關(guān)信息如下表:
已知該商品的進(jìn)價(jià)為每件30元,設(shè)銷(xiāo)售該商品的每天利潤(rùn)為y元.
(1)求出y與x的函數(shù)關(guān)系式;
(2)問(wèn)銷(xiāo)售該商品第幾天時(shí),當(dāng)天銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)是多少?
(3)該商品在銷(xiāo)售過(guò)程中,共有多少天每天銷(xiāo)售利潤(rùn)不低于4800元?請(qǐng)直接寫(xiě)出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把下列代數(shù)式的代號(hào)填入相應(yīng)的集合括號(hào)里.
(A) (B) (C) (D)(E)0
(F) (G) (H) (I)
(1)單項(xiàng)式集合__________;
(2)多項(xiàng)式集合____________;
(3)整式集合____________;
(4)二項(xiàng)式集合___________;
(5)三次多項(xiàng)式集合__________;
(6)非整式集合__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示為圓柱形大型儲(chǔ)油罐固定在U型槽上的橫截面圖.已知圖中ABCD為等腰梯形(AB∥DC),支點(diǎn)A與B相距8 m,罐底最低點(diǎn)到地面CD距離為1 m.設(shè)油罐橫截面圓心為O,半徑為5 m,∠D=56°,求:U型槽的橫截面(陰影部分)的面積.(參考數(shù)據(jù):sin 53°≈0.8,tan 56°≈1.5,π≈3,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司共有A、B、C三個(gè)部門(mén),根據(jù)每個(gè)部門(mén)的員工人數(shù)和相應(yīng)每人所創(chuàng)的年利潤(rùn)繪制成如下的統(tǒng)計(jì)表和扇形圖
(1)①在扇形圖中,C部門(mén)所對(duì)應(yīng)的圓心角的度數(shù)為
②在統(tǒng)計(jì)表中,b= ,c=
(2)求這個(gè)公司平均每人所創(chuàng)年利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C在線(xiàn)段AB上,點(diǎn)M、N分別是AC、BC的中點(diǎn).
若,求線(xiàn)段MN的長(zhǎng);
若C為線(xiàn)段AB上任一點(diǎn),滿(mǎn)足,其它條件不變,你能猜想MN的長(zhǎng)度嗎?并說(shuō)明理由,你能用一句簡(jiǎn)潔的話(huà)描述你發(fā)現(xiàn)的結(jié)論嗎?
若C在線(xiàn)段AB的延長(zhǎng)線(xiàn)上,且滿(mǎn)足cm,M、N分別為AC、BC的中點(diǎn),你能猜想MN的長(zhǎng)度嗎?請(qǐng)畫(huà)出圖形,寫(xiě)出你的結(jié)論,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】⊙O的直徑為10cm,弦AB∥CD,且AB=8cm,CD=6cm,則弦AB與CD之間的距離為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊ABCD中,AD=2AB,F是AD的中點(diǎn),作CE⊥AB,垂足E在線(xiàn)段AB上,連接EF、CF,則下列結(jié)論中一定成立的是 (把所有正確結(jié)論的序號(hào)都填在橫線(xiàn)上)
(1)∠DCF=∠BCD,(2)EF=CF;(3)SΔBEC=2SΔCEF;(4)∠DFE=3∠AEF
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四邊形ABCD是正方形,M是AB延長(zhǎng)線(xiàn)上一點(diǎn).直角三角尺的一條直角邊經(jīng)過(guò)點(diǎn)D,且直角頂點(diǎn)E在AB邊上滑動(dòng)(點(diǎn)E不與點(diǎn)A、B重合),另一直角邊與∠CBM的平分線(xiàn)BF相交于點(diǎn)F.
(1)如圖1,當(dāng)點(diǎn)E在AB邊得中點(diǎn)位置時(shí):
①通過(guò)測(cè)量DE、EF的長(zhǎng)度,猜想DE與EF滿(mǎn)足的數(shù)量關(guān)系是 .
②連接點(diǎn)E與AD邊的中點(diǎn)N,猜想NE與BF滿(mǎn)足的數(shù)量關(guān)系是 ,請(qǐng)證明你的猜想.
(2)如圖2,當(dāng)點(diǎn)E在AB邊上的任意位置時(shí),猜想此時(shí)DE與EF有怎樣的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com