【題目】如圖,點C在線段AB上,點M、N分別是AC、BC的中點.
若,求線段MN的長;
若C為線段AB上任一點,滿足,其它條件不變,你能猜想MN的長度嗎?并說明理由,你能用一句簡潔的話描述你發(fā)現(xiàn)的結(jié)論嗎?
若C在線段AB的延長線上,且滿足cm,M、N分別為AC、BC的中點,你能猜想MN的長度嗎?請畫出圖形,寫出你的結(jié)論,并說明理由.
【答案】(1)MN=7cm;(2)MN=a;結(jié)論:當(dāng)C為線段AB上一點,且M,N分別是AC,BC的中點,則有MN=AB;(3)MN=b.
【解析】
(1)由中點的定義可得MC、CN長,根據(jù)線段的和差關(guān)系即可得答案;(2)根據(jù)中點定義可得MC=AC,CN=BC,利用MN=MC+CN,,即可得結(jié)論,總結(jié)描述即可;(3)點在AB的延長線上時,根據(jù)M、N分別為AC、BC的中點,即可求出MN的長度.
(1)∵點M、N分別是AC、BC的中點,AC=8,CB=6,
∴MC=AC=4,CN=BC=3,
∴MN=MC+CN=7cm.
(2)∵點M、N分別是AC、BC的中點,
∴MC=AC,CN=BC,
∵AC+BC=AB=a,
∴MN=MC+CN=(AC+BC)=a.
綜上可得結(jié)論:當(dāng)C為線段AB上一點,且M,N分別是AC,BC的中點,則有MN=AB.
(3)如圖:當(dāng)點C在線段AB的延長線時,則AC>BC,
∵M是AC的中點,
∴CM=AC,
∵點N是BC的中點,
∴CN=BC,
∴MN=CM-CN=(AC-BC)=b.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:善于思考的小明在解方程組時,采用了一種“整體代換”的解法,解法如下:
解:將方程②8x+20y+2y=10,變形為2(4x+10y)+2y=10③,把方程①代入③得,2×6+2y=10,則y=-1;把y=-1代入①得,x=4,所以方程組的解為:,
請你解決以下問題:
(1)試用小明的“整體代換”的方法解方程組
(2)已知x、y、z,滿足試求z的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖,將一張正方形紙片,剪成四個大小形狀一樣的小正方形,然后將其中的一個小正方形再按同樣的方法剪成四個小正方形,再將其中的一個小正方形剪成四個小正方形,如此循環(huán)下去.
(1)填寫下表:
剪的次數(shù) | 1 | 2 | 3 | 4 | 5 |
正方形個數(shù) | 4 | 7 | 10 |
|
|
(2)如果剪了8次,共剪出 個小正方形.
(3)如果剪n次,共剪出 個小正方形.
(4)設(shè)最初正方形紙片為1,則剪n次后,最小正方形的邊長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)操究發(fā)現(xiàn):如圖1,△ABC為等邊三角形,點D為AB邊上的一點,∠DCE=30°,∠DCF=60°且CF=CD
①求∠EAF的度數(shù);
②DE與EF相等嗎?請說明理由
(2)類比探究:如圖2,△ABC為等腰直角三角形,∠ACB=90°,點D為AB邊上的一點,∠DCE=45°,CF=CD,CF⊥CD,請直接寫出下列結(jié)果:
①∠EAF的度數(shù)
②線段AE,ED,DB之間的數(shù)量關(guān)系
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】同學(xué)們都知道表示5與(-2)之差的絕對值,也可理解為5與-2兩數(shù)在數(shù)軸上所對的兩點之間的距離,試探索:
(1) 求= ;
(2) 使得=3成立的數(shù)是 ;
(3) 由以上探索猜想,對于任何有理數(shù)x,則最小值是 ;
(4)由以上探索猜想,使得的成立的整數(shù)x是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的直徑為10,點A,點B,點C在⊙O上,∠CAB的平分線交⊙O于點D.
(1)如圖①,若BC為⊙O的直徑,AB=6,求AC,BD,CD的長;
(2)如圖②,若∠CAB=60°,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E是正方形ABCD邊AB的中點,連接CE,過點B作BH⊥CE于F,交AC于G,交AD于H.下列說法: ;②點F是GB的中點; ; ,其中正確的結(jié)論的序號是_____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=AC,D是BC邊上任意一點,以點A為中心,取旋轉(zhuǎn)角等于∠BAC,把△ABD繞點A逆時針旋轉(zhuǎn)得到△ACM.
(1)如圖1,若∠BAC=50°,則∠BCM= ;
(2)如圖2,在BC上取點E,使∠DAE=∠BAC,求證:DE<BD+EC;
(3)如圖3,在(2)的條件下,若∠BAC=90°,BD=1,EC=2,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中, , ,將繞點沿逆時針方向旋轉(zhuǎn)得到.
(1)線段的長是 , 的度數(shù)是 ;
(2)連結(jié),求證:四邊形是平行四邊形;
(3)求四邊形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com