【題目】在解方程x2x+1=0的時候,奇奇的方法別出心裁:

解:移項得:x2+1=x,變形得:x2+1=x=(+)x①,由于原方程中x≠0,故可以在①的兩邊同時除以x得:x+=+解得:x1=,x2=

這是利用對稱式的典型范例,下面的問題需要你來完成:

(1)直接寫出方程x﹣=b﹣的解:

(2)由(1)的結(jié)論解關(guān)于x的方程:x﹣=a﹣(a≠2)

(3)模仿奇奇的解法,解方程:x2x+4=0.

【答案】(1) x1=b,x2=﹣;(2) x1=a,x2=;(3) x1=3,x2=

【解析】

(1)由題意直接可以得到結(jié)果;

(2)先將原方程化為對稱式x﹣2﹣=a﹣2﹣根據(jù)(1)得到x﹣2=a﹣2x﹣2=﹣,然后算出x的值即可;

(3)先將原方程化為x+=3+,然后根據(jù)(1)直接可得到結(jié)果.

(1)①x1=bx2=﹣

(2)原方程化為x﹣2﹣=a﹣2﹣,

可得x﹣2=a﹣2x﹣2=﹣

x1=a,x2=

經(jīng)檢驗:x1=a,x2= 是分式方程的解;

(3)原方程化為x+=3+,

x1=3,x2=

經(jīng)檢驗:x1=3,x2= 是分式方程的解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=30°,OC為∠AOB內(nèi)部一條射線,點P為射線OC上一點,OP=4,點MN分別為OA、OB邊上動點,則MNP周長的最小值為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,DBC邊上的一點,ABDB,BE平分∠ABC,交AC邊于點E,連接DE

(1)求證:△ABE≌△DBE;

(2)若∠A100°,∠C50°,求∠AEB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若點P從點A出發(fā)以每秒1cm的速度沿折線ACBA運動,設(shè)運動時間為t秒(t0).

1)若點PAC上,且滿足PA=PB時,求出此時t的值;

2)若點P恰好在∠BAC的角平分線上(但不與A點重合),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC,按以下步驟作圖:①分別以 BC 為圓心,以大于BC 的長為半徑作弧,兩弧相交于兩點 M,N;②作直線 MN AB 于點 D,連接 CD.若 CD=AC,∠A=50°,則∠ACB 的度數(shù)為

A.90°B.95°C.105°D.110°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC的周長為21,底邊BC=5,AB的垂直平分線DEAB于點D,AC于點E,則△BEC的周長為(  )

A. 13 B. 14 C. 15 D. 16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)觀察推理:如圖1,△ABC中,∠ACB=90°,AC=BC,直線l過點C,點A、B在直線l同側(cè),BD⊥l,AE⊥l,垂足分別為D、E.求證:△AEC≌△CDB;

(2)類比探究:如圖2,Rt△ABC中,∠ACB=90°,AC=6,將斜邊AB繞點A逆時針旋轉(zhuǎn)90°至AB′,連接B′C,求△AB′C的面積.

(3)拓展提升:如圖3,等邊△EBC中,EC=BC=4cm,點OBC上,且OC=3cm,動點P從點E沿射線EC2cm/s速度運動,連結(jié)OP,將線段OP繞點O逆時針旋轉(zhuǎn)120°得到線段OF.要使點F恰好落在射線EB上,求點P運動的時間ts.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=4,AC=3,BC=5,DE是BC的垂直平分線,DE分別交BC、AB于點D、E.

(1)求證:△ABC為直角三角形.

(2)求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AD平分∠BACBDAD,垂足為D,過DDEAC,交ABE,若BD=7,AD=24,求線段DE的長.

查看答案和解析>>

同步練習(xí)冊答案