【題目】已知:△AOB和△COD均為等腰直角三角形,∠AOB=∠COD=90°.連接AD,BC,點(diǎn)H為BC中點(diǎn),連接OH.
(1)如圖1所示,求證: 且
(2)將△COD繞點(diǎn)O旋轉(zhuǎn)到圖2、圖3所示位置時(shí),線段OH與AD又有怎樣的關(guān)系,并選擇一個(gè)圖形證明你的結(jié)論
【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析.
【解析】
(1)首先證明△AOD≌△BOC(SAS),利用全等三角形的性質(zhì)得到BC=AD,再利用直角三角形斜邊中線的性質(zhì)即可得到OH=BC=AD,然后通過(guò)全等三角形對(duì)應(yīng)角相等以及直角三角形兩銳角互余證明OH⊥AD;
(2)如圖2中,延長(zhǎng)OH到E,使得HE=OH,連接BE,通過(guò)證明△BEO≌△ODA,可得OH=OE=AD以及∠DAO+∠AOH=∠EOB+∠AOH=90°,問(wèn)題得證;如圖3中,延長(zhǎng)OH到E,使得HE=OH,連接BE,延長(zhǎng)EO交AD于G,同理可證OH=OE=AD,∠DAO+∠AOG=∠EOB+∠AOG=90°.
(1)證明:如圖1中,∵△OAB與△OCD為等腰直角三角形,∠AOB=∠COD=90°,
∴OC=OD,OA=OB,
在△AOD與△BOC中,
∵OA=OB,∠AOD=∠BOC,OD=OC,
∴△AOD≌△BOC(SAS),
∴BC=AD
∵H是BC中點(diǎn),
∴OH=BC=AD.
∵△AOD≌△BOC
∴∠ADO=∠BCO,∠OAD=∠OBC,
∵點(diǎn)H為線段BC的中點(diǎn),
∴∠OBH=∠HOB=∠OAD,
又∵∠OAD+∠ADO=90°,
∴∠ADO+∠BOH=90°,
∴OH⊥AD;
(2)解:結(jié)論:OH⊥AD,OH=AD
證明:如圖2中,延長(zhǎng)OH到E,使得HE=OH,連接BE,
易證△BEO≌△ODA,
∴OE=AD,∴OH=OE=AD.
由△BEO≌△ODA,知∠EOB=∠DAO,
∴∠DAO+∠AOH=∠EOB+∠AOH=90°,
∴OH⊥AD.
如圖3中,結(jié)論不變.延長(zhǎng)OH到E,使得HE=OH,連接BE,延長(zhǎng)EO交AD于G.
易證△BEO≌△ODA,
∴OE=AD,∴OH=OE=AD.
由△BEO≌△ODA,知∠EOB=∠DAO,
∴∠DAO+∠AOG=∠EOB+∠AOG=90°,
∴∠AGO=90°,
∴OH⊥AD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,每個(gè)小正方形的邊長(zhǎng)為1cm
(1)求四邊形ABCD的面積;
(2)四邊形ABCD中有直角嗎?若有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷售一款西服和領(lǐng)帶,西服每套定價(jià)600元,領(lǐng)帶每條定價(jià)80元,該商場(chǎng)在周末開(kāi)展促銷活動(dòng),向顧客提供兩種優(yōu)惠方案:①買一套西服送一條領(lǐng)帶;②西服和領(lǐng)帶都按定價(jià) 的90%付款.現(xiàn)某客戶要購(gòu)買西服20套,領(lǐng)帶條()
(1)若該客戶按方案①購(gòu)買,需付款多少元? (用含的代數(shù)式表示)
(2)若該客戶按方案②購(gòu)買,需付款多少元?(用含的代數(shù)式表示)
(3)若,通過(guò)計(jì)算說(shuō)明此時(shí)按哪種方案購(gòu)買較為合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到,其中點(diǎn)A′與點(diǎn)A是對(duì)應(yīng)點(diǎn),點(diǎn)B′與點(diǎn)B是對(duì)應(yīng)點(diǎn),連接AB′,且A、B′、A′在同一條直線上,則AA′的長(zhǎng)為( 。
A. 6 B. 4 C. 3 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,則BD的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】暑假期間,小明和父母一起開(kāi)車到距家200千米的景點(diǎn)旅游.出發(fā)前,汽車油箱內(nèi)儲(chǔ)油45升,當(dāng)行駛150千米時(shí),發(fā)現(xiàn)油箱剩余油量為30升.(假設(shè)行駛過(guò)程中汽車的耗油量是均勻的.)
(1)寫出用行駛路程x(千米)來(lái)表示剩余油量Q(升)的代數(shù)式;
(2)當(dāng)x=300千米時(shí),求剩余油量Q的值;
(3)當(dāng)油箱中剩余油量少于3升時(shí),汽車將自動(dòng)報(bào)警.如果往返途中不加油,他們能否在汽車報(bào)警前回到家?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線與軸、軸相交于、兩點(diǎn),與的圖象相交于、兩點(diǎn),連接、.給出下列結(jié)論:
①;②;③;④不等式的解集是或.
其中正確結(jié)論的序號(hào)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某中學(xué)計(jì)劃購(gòu)進(jìn)若干個(gè)甲種規(guī)格的排球和乙種規(guī)格的足球. 如果購(gòu)買20個(gè)甲種規(guī)格的排球和15個(gè)乙種規(guī)格的足球,一共需要花費(fèi)2050元;如果購(gòu)買10個(gè)甲種規(guī)格的排球和20個(gè)乙種規(guī)格的足球,一共需要花費(fèi)1900元。
(1)求每個(gè)甲種規(guī)格的排球和每個(gè)已匯總規(guī)格的足球的價(jià)格分別是多少元?
(2)如果學(xué)校要購(gòu)買甲種規(guī)格的排球和乙種規(guī)格的足球共50個(gè),并且預(yù)算總費(fèi)用不超過(guò)3080元,那么該學(xué)校至多能購(gòu)買多少個(gè)乙種規(guī)格的足球?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com