【題目】《九章算術》是我國東漢初年編訂的一部數(shù)學經典著作.在它的“方程”一章里,一次方程組是由算籌布置而成的.《九章算術》中的算籌圖是豎排的,為看圖方便,我們把它改為橫排,如圖1、圖2.圖中各行從左到右列出的算籌數(shù)分別表示未知數(shù)xy的系數(shù)與相應的常數(shù)項.把圖1所示的算籌圖用我們現(xiàn)在所熟悉的方程組形式表述出來,就是,類似地,圖2所示的算籌圖我們可以表述為( 。

A.B.C.D.

【答案】A

【解析】

由圖1可得1個豎直的算籌數(shù)算1,一個橫的算籌數(shù)算10,每一橫行是一個方程,第一個數(shù)是x的系數(shù),第二個數(shù)是y的系數(shù),第三個數(shù)是相加的結果:前面的表示十位,后面的表示個位,由此可得圖2的表達式.

解:第一個方程x的系數(shù)為2,y的系數(shù)為1,相加的結果為11;第二個方程x的系數(shù)為4,y的系數(shù)為3,相加的結果為27,所以可列方程為

故選:A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】日下午,由名隊員組成的揚州市第七批支援湖北醫(yī)療隊,肩負著國家的重托和神圣職責使命啟程出征,其中小李、小王和三個同事共五人直接派往一線某醫(yī)院,根據該院人事安排需要先抽出一人去重癥監(jiān)護,再派兩人到發(fā)熱門診,請你利用所學知識完成下列問題.

1)小李被派往重癥監(jiān)護的概率是  ;

2)若正好抽出她們的一同事去往重癥監(jiān)護,請你利用畫樹狀圖或列表的方法,求出小李和小王同時被派往發(fā)熱門診的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)發(fā)現(xiàn)探究:如圖1,矩形和矩形位似,,連接,則線段有何數(shù)量關系,關系是__________.直線與直線所夾銳角的度數(shù)是__________

2)拓展探究:如圖2,將矩形繞點逆時針旋轉角,上面的結論是否仍然成立?如果成立,請就圖2給出的情況加以證明.

3)問題解決:若點的中點,,連接,,在矩形繞點旋轉過程中,請直接寫出長的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在矩形ABCD中,BC=3,動點PB出發(fā),以每秒1個單位的速度,沿射線BC方向移動,作△PAB關于直線PA的對稱△PAB' ,設點P的運動時間為ts).

1)若AB=2

①如圖2,當點B' 落在AC上時,求t的值;

是否存在異于圖2的時刻,使得△PCB是直角三角形?若存在,請直接寫出所有符合題意的t值?若不存在,請說明理由.

2)若四邊形ABCD是正方形,直線PB'與直線CD相交于點M,當點P不與點C重合時,求證:∠PAM=45°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某社區(qū)計劃對1200m2的區(qū)域進行綠化,經投標由甲、乙兩個施工隊來完成,已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的2倍,并且甲、乙兩隊在分別獨立完成面積為300m2區(qū)域的綠化時,甲隊比乙隊少用3天.

甲、乙兩施工隊每天分別能完成綠化的面積是多少?

設先由甲隊施工x天,再由乙隊施工y天,剛好完成綠化任務,求y關于x的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC,BD交于點O,AEBCCB延長線于點E,CFAEAD延長線于點F

1)求證:四邊形AECF是矩形;

2)連接OE,若AE12AD13,則線段OE的長度是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的方格中,△OAB的頂點坐標分別為O0,0)、A(﹣2,﹣1)、B(﹣1,﹣3),△O1A1B1△OAB是關于點P為位似中心的位似圖形.

1)在圖中標出位似中心P的位置,并寫出點P的坐標及△O1A1B1△OAB的位似比;

2)以原點O為位似中心,在y軸的左側畫出△OAB的另一個位似△OA2B2,使它與△OAB的位似比為21,并寫出點B的對應點B2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象經過點(,)和(,),完成下面問題:

1)求函數(shù)的表達式;

2)在給出的平面直角坐標系中,請用適當?shù)姆椒ó嫵鲞@個函數(shù)的圖象,并寫出這個函數(shù)的一條性質;

3)已知函數(shù)的圖象如圖所示,結合你所畫出的圖象,直接寫出的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某軟件開發(fā)公司開發(fā)了A、B兩種軟件,每種軟件成本均為1400元,售價分別為2000元、1800元,這兩種軟件每天的銷售額共為112000元,總利潤為28000元.

1)該店每天銷售這兩種軟件共多少個?

2)根據市場行情,公司擬對A種軟件降價銷售,同時提高B種軟件價格.此時發(fā)現(xiàn),A種軟件每降50元可多賣1件,B種軟件每提高50元就少賣1件.如果這兩種軟件每天銷售總件數(shù)不變,那么這兩種軟件一天的總利潤最多是多少?

查看答案和解析>>

同步練習冊答案