【題目】如圖,已知AB是⊙O的直徑,⊙O與Rt△ACD的兩直角邊分別交于點(diǎn)E、F,點(diǎn)F是弧BE的中點(diǎn),∠C=90°,連接AF.
(1)求證:直線DF是⊙O的切線.
(2)若BD=1,OB=2,求tan∠AFC的值.
【答案】(1)詳見解析;(2)
【解析】
(1)連結(jié)OF,BE,根得到BE∥CD,根據(jù)平行線的性質(zhì)得到∠OFD=90°,根據(jù)切線的判定定理證明;
(2)由OF∥AC可得比例線段求出AC長(zhǎng),再由勾股定理可求得DC長(zhǎng),則能求出CF長(zhǎng),tan∠AFC的值可求.
(1)證明:連結(jié)OF,BE,
∵AB是⊙O的直徑,
∴∠AEB=90°,
∵∠C=90°,
∴∠AEB=∠ACD,
∴BE∥CD,
∵點(diǎn)F是弧BE的中點(diǎn),
∴OF⊥BE,
∴OF⊥CD,
∵OF為半徑,
∴直線DF是⊙O的切線;
(2)解:∵∠C=∠OFD=90°,
∴AC∥OF,
∴△OFD∽△ACD,
∴,
∵BD=1,OB=2,
∴OD=3,AD=5,
∴,
∴CD===,
∵,
∴=,
∴tan∠AFC=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=x+b與雙曲線y=(k為常數(shù),k≠0)在第一象限內(nèi)交于點(diǎn)A(1,2),且與x軸、y軸分別交于B,C兩點(diǎn).
(1)求直線和雙曲線的解析式;
(2)點(diǎn)P在x軸上,且△BCP的面積等于2,求P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知菱形ABCD的面積為8,對(duì)角線AC長(zhǎng)為4,M為BC的中點(diǎn),若P為對(duì)角線AC上一動(dòng)點(diǎn),則PB與PM之和的最小值為( )
A. B. 2C. 2D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,△ABC是等邊三角形,點(diǎn)D是平面內(nèi)一點(diǎn),連接CD,將線段CD繞C順時(shí)針旋轉(zhuǎn)60°得到線段CE,連接BE,AD,并延長(zhǎng)AD交BE于點(diǎn)P.
(1)當(dāng)點(diǎn)D在圖1所在的位置時(shí)
①求證:△ADC≌△BEC;
②求∠APB的度數(shù);
③求證:PD+PE=PC;
(2)如圖2,當(dāng)△ABC邊長(zhǎng)為4,AD=2時(shí),請(qǐng)直接寫出線段CE的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),已知正方形ABCD在直線MN的上方BC在直線MN上,E是BC上一點(diǎn),以AE為邊在直線MN的上方作正方形AEFG.
(1)連接GD,求證:△ADG≌△ABE;
(2)連接FC,觀察并直接寫出∠FCN的度數(shù)(不要寫出解答過(guò)程)
(3)如圖(2),將圖中正方形ABCD改為矩形ABCD,AB=6,BC=8,E是線段BC上一動(dòng)點(diǎn)(不含端點(diǎn)B、C),以AE為邊在直線MN的上方作矩形AEFG,使頂點(diǎn)G恰好落在射線CD上.判斷當(dāng)點(diǎn)E由B向C運(yùn)動(dòng)時(shí),∠FCN的大小是否總保持不變,若∠FCN的大小不變,請(qǐng)求出tan∠FCN的值.若∠FCN的大小發(fā)生改變,請(qǐng)舉例說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(1,0)、C(﹣2,3)兩點(diǎn),與y軸交于點(diǎn)N,其頂點(diǎn)為D.
(1)求拋物線及直線AC的函數(shù)關(guān)系式;
(2)若P是拋物線上位于直線AC上方的一個(gè)動(dòng)點(diǎn),求△APC的面積的最大值及此時(shí)點(diǎn)P的坐標(biāo);
(3)在對(duì)稱軸上是否存在一點(diǎn)M,使△ANM的周長(zhǎng)最。舸嬖,請(qǐng)求出M點(diǎn)的坐標(biāo)和△ANM周長(zhǎng)的最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線經(jīng)過(guò)點(diǎn)、.是線段上一動(dòng)點(diǎn)(點(diǎn)不與、重合),過(guò)點(diǎn)作軸的垂線交拋物線于點(diǎn),交線段于點(diǎn).過(guò)點(diǎn)作,垂足為點(diǎn).
[Failed to download image : http://192.168.0.10:8086/QBM/2019/5/18/2206393160556544/2207286529548288/STEM/a9696d0cbdac438aa94c80bfc838afd4.png]
(1)求該拋物線的解析式;
(2)試求線段的長(zhǎng)關(guān)于點(diǎn)的橫坐標(biāo)的函數(shù)解析式,并求出的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算
(1)(x+y)2-2x(x+y); (2)(a+1)(a-1)-(a-1)2;
(3)先化簡(jiǎn),再求值:
(x+2y)(x-2y)-(2x3y-4x2y2)÷2xy,其中x=-3,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com