(2006,深圳)如圖,在梯形ABCD中,ADBC,AB=DC=AD,∠ADC=120°.

(1)求證:BDDC

(2)若AB=4,求梯形ABCD的面積.

答案:略
解析:

(1)證明:∵梯形ABCD ∴ADBCAB=CD,∠ADC=120°

∴∠C=60° ∠A=120° 又∵∠ABD=BDA=DBC=30°

∴∠BDC=90° ∴BDDC

(2)


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2006•深圳)如圖,拋物線y=ax2-8ax+12a(a<0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),拋物線上另有一點(diǎn)C在第一象限,滿足∠ACB為直角,且恰使△OCA∽△OBC.
(1)求線段OC的長;
(2)求該拋物線的函數(shù)關(guān)系式;
(3)在x軸上是否存在點(diǎn)P,使△BCP為等腰三角形?若存在,求出所有符合條件的P點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣東省深圳市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•深圳)如圖,拋物線y=ax2-8ax+12a(a<0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),拋物線上另有一點(diǎn)C在第一象限,滿足∠ACB為直角,且恰使△OCA∽△OBC.
(1)求線段OC的長;
(2)求該拋物線的函數(shù)關(guān)系式;
(3)在x軸上是否存在點(diǎn)P,使△BCP為等腰三角形?若存在,求出所有符合條件的P點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《平面直角坐標(biāo)系》(02)(解析版) 題型:解答題

(2006•深圳)如圖1,在平面直角坐標(biāo)系xOy中,點(diǎn)M在x軸的正半軸上,⊙M交x軸于A、B兩點(diǎn),交y軸于C、D兩點(diǎn),且C為的中點(diǎn),AE交y軸于G點(diǎn),若點(diǎn)A的坐標(biāo)為(-2,0),AE=8.

(1)求點(diǎn)C的坐標(biāo);
(2)連接MG、BC,求證:MG∥BC;
(3)如圖2,過點(diǎn)D作⊙M的切線,交x軸于點(diǎn)P.動點(diǎn)F在⊙M的圓周上運(yùn)動時,的比值是否發(fā)生變化?若不變,求出比值;若變化,說明變化規(guī)律.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣東省深圳市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•深圳)如圖,在梯形ABCD中,AD∥BC,AB=DC=AD,∠ADC=120°.
(1)求證:BD⊥DC;
(2)若AB=4,求梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年廣東省深圳市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2006•深圳)如圖,在?ABCD中,AB:AD=3:2,∠ADB=60°,那么cos∠A的值等于( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案