【題目】圓桌面(桌面中間有一個(gè)直徑為0.4m的圓洞)正上方的燈泡(看作一個(gè)點(diǎn))發(fā)出的光線(xiàn)照射平行于地面的桌面后,在地面上形成如圖所示的圓環(huán)形陰影.已知桌面直徑為1.2m,桌面離地面1m,若燈泡離地面3m,則地面圓環(huán)形陰影的面積是(  )

A.0.324πm2
B.0.288πm2
C.1.08πm2
D.0.72πm2

【答案】D
【解析】解:如圖所示:∵AC⊥OB,BD⊥OB,
∴△AOC∽△BOC,
= ,即 = ,
解得:BD=0.9m,
同理可得:AC′=0.2m,則BD′=0.3m,
∴S圓環(huán)形陰影=0.92π﹣0.32π=0.72π(m2).
故選:D.

先根據(jù)AC⊥OB,BD⊥OB可得出△AOC∽△BOD,由相似三角形的對(duì)應(yīng)邊成比例可求出BD的長(zhǎng),進(jìn)而得出BD′=0.3m,再由圓環(huán)的面積公式即可得出結(jié)論.本題考查的是相似三角形的應(yīng)用以及中心投影,利用相似三角形的對(duì)應(yīng)邊成比例得出陰影部分的半徑是解題關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,面積為24的正方形ABCD中,有一個(gè)小正方形EFGH,其中E、F、G分別在AB、BC、FD上.若BF= ,則小正方形的周長(zhǎng)為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某容器由A、B、C三個(gè)連通長(zhǎng)方體組成,其中A、B、C的底面積分別為25cm2、10cm2、5cm2,C的容積是整個(gè)容器容積的(容器各面的厚度忽略不計(jì)),A、B的總高度為12厘米.現(xiàn)以均勻的速度(單位:cm3/min)向容器內(nèi)注水,直到注滿(mǎn)為止.已知單獨(dú)注滿(mǎn)A、B分別需要的時(shí)間為10分鐘、8分鐘.

(1)求注滿(mǎn)整個(gè)容器所需的總時(shí)間;

(2)設(shè)容器A的高度為xcm,則容器B的高度為   cm;

(3)求容器A的高度和注水的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)軸上有三個(gè)點(diǎn)、,如圖所示.

(1)將點(diǎn)向左平移4個(gè)單位,此時(shí)該點(diǎn)表示的數(shù)是________;

(2)將點(diǎn)向左平移3個(gè)單位得到數(shù),再向右平移2個(gè)單位得到數(shù),則分別是多少?

(3)怎樣移動(dòng)、、中的兩點(diǎn),使三個(gè)點(diǎn)表示的數(shù)相同?你有幾種方法?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列圖案中既是軸對(duì)稱(chēng)圖形又是中心對(duì)稱(chēng)圖形的是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列式子錯(cuò)誤的是( 。
A.cos40°=sin50°
B.tan15°tan75°=1
C.sin225°+cos225°=1
D.sin60°=2sin30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,給定一個(gè)半徑長(zhǎng)為2的圓,圓心O到水平直線(xiàn)l的距離為d,即OM=d.我們把圓上到直線(xiàn)l的距離等于1的點(diǎn)的個(gè)數(shù)記為m.如d=0時(shí),l為經(jīng)過(guò)圓心O的一條直線(xiàn),此時(shí)圓上有四個(gè)到直線(xiàn)l的距離等于1的點(diǎn),即m=4,由此可知:
①當(dāng)d=3時(shí),m=
②當(dāng)m=2時(shí),d的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在直角坐標(biāo)系xOy中,點(diǎn)Ay軸上,點(diǎn)B,點(diǎn)Cx軸上,點(diǎn)C在點(diǎn)B的右側(cè),OA=2OB=2BC=2.

(1)點(diǎn)C的坐標(biāo)是   ;

(2)點(diǎn)Px軸上一點(diǎn),點(diǎn)PAC的距離等于AC的長(zhǎng)度,求點(diǎn)P的坐標(biāo);

(3)如圖2,點(diǎn)DAC上一點(diǎn),∠CBD=ABO,連接OD,在AB上是否存在一點(diǎn)Q,使QB=AB﹣OD,若存在,求點(diǎn)Q與點(diǎn)D的橫坐標(biāo)之和,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校團(tuán)委組織了有獎(jiǎng)?wù)魑幕顒?dòng),并設(shè)立了一、二、三等獎(jiǎng),根據(jù)設(shè)獎(jiǎng)情況買(mǎi)了50 件獎(jiǎng)品,其二等獎(jiǎng)獎(jiǎng)品的件數(shù)比一等獎(jiǎng)獎(jiǎng)品的件數(shù)的2 倍少10, 各種獎(jiǎng)品的單價(jià)如下表所示:

如果計(jì)劃一等獎(jiǎng)獎(jiǎng)品買(mǎi)x件,買(mǎi)5 件獎(jiǎng)品的總數(shù)是y元.

(1)先填表,再用含x的代數(shù)式表示y并化簡(jiǎn);

(2)若一等獎(jiǎng)獎(jiǎng)品買(mǎi)10件,則共花費(fèi)多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案