【題目】如圖,在等腰直角△ABC中,∠CAB=90°,F(xiàn)是AB邊上一點,作射線CF,過點B作BG⊥CF于點G,連接AG.
(1)求證:∠ABG=∠ACF;
(2)用等式表示線段CG,AG,BG之間的等量關系,并證明.
【答案】(1)證明見解析;(2)CG=AG+BG,證明見解析.
【解析】
(1)根據(jù)等腰直角三角形的性質解答即可;
(2)在CG上截取CH=BG,連接AH,利用全等三角形的判定和性質解答即可.
(1)證明:
∵∠CAB=90°.
∵BG⊥CF于點G,
∴∠BGF=∠CAB=90°.
∵∠GFB=∠CFA
∴∠ABG=∠ACF
(2)CG=AG+BG
在CG上截取CH=BG,連接AH,
∵△ABC是等腰直角三角形,
∴∠CAB=90°,AB=AC.
∵∠ABG=∠ACH.
∴△ABG≌△ACH,
∴AG=AH,∠GAB=∠HAC.
∴∠GAH=90°.
∴AG2+AH2=GH2.
∴GH=AG,
∴CG=CH+GH=AG+BG,
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△ABC中,點E為邊AB上任意一點,點D在邊CB的延長線上,且ED=EC.
(1)當點E為AB的中點時(如圖1),則有AE DB(填“>”“<”或“=”);
(2)猜想AE與DB的數(shù)量關系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與實踐
問題情境:在數(shù)學活動課上,老師出示了這樣一個問題:如圖1,在矩形ABCD中,AD=2AB,E是AB延長線上一點,且BE=AB,連接DE,交BC于點M,以DE為一邊在DE的左下方作正方形DEFG,連接AM.試判斷線段AM與DE的位置關系.
探究展示:勤奮小組發(fā)現(xiàn),AM垂直平分DE,并展示了如下的證明方法:
證明:∵BE=AB,∴AE=2AB.
∵AD=2AB,∴AD=AE.
∵四邊形ABCD是矩形,∴AD∥BC.
∴.(依據(jù)1)
∵BE=AB,∴.∴EM=DM.
即AM是△ADE的DE邊上的中線,
又∵AD=AE,∴AM⊥DE.(依據(jù)2)
∴AM垂直平分DE.
反思交流:
(1)①上述證明過程中的“依據(jù)1”“依據(jù)2”分別是指什么?
②試判斷圖1中的點A是否在線段GF的垂直平分線上,請直接回答,不必證明;
(2)創(chuàng)新小組受到勤奮小組的啟發(fā),繼續(xù)進行探究,如圖2,連接CE,以CE為一邊在CE的左下方作正方形CEFG,發(fā)現(xiàn)點G在線段BC的垂直平分線上,請你給出證明;
探索發(fā)現(xiàn):
(3)如圖3,連接CE,以CE為一邊在CE的右上方作正方形CEFG,可以發(fā)現(xiàn)點C,點B都在線段AE的垂直平分線上,除此之外,請觀察矩形ABCD和正方形CEFG的頂點與邊,你還能發(fā)現(xiàn)哪個頂點在哪條邊的垂直平分線上,請寫出一個你發(fā)現(xiàn)的結論,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC為等邊三角形,點D為直線BC上一動點(點D不與點B,點C重合).以AD為邊作等邊三角形ADE,連接CE.
(1)如圖1,當點D在邊BC上時.求證:△ABD≌△ACE;
(2)如圖2,當點D在邊BC的延長線上時,其他條件不變,請寫出BC,DC,CE之間存在的數(shù)量關系,并寫出證明過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國漢代數(shù)學家趙爽為了證明勾股定理,創(chuàng)造了一幅“弦圖”后人稱其為“趙爽弦圖”(如圖1).圖2是弦圖變化得到,它是用八個全等的直角三角形拼接而成,記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3,若S1+S2+S3=10,求S2的值.以下是求S2的值的解題過程,請你根據(jù)圖形補充完整.
解:設每個直角三角形的面積為S
S1﹣S2= (用含S的代數(shù)式表示)①
S2﹣S3= (用含S的代數(shù)式表示)②
由①,②得,S1+S3= 因為S1+S2+S3=10,
所以2S2+S2=10.
所以S2=.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在等邊△ABC中,點D.E分別在邊BC,AB上,且BD=AE,AD與CE交于點F.
(1)求證:AD=CE
(2)求∠DFC的度數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰中,,D為BC的中點,過點C作于點G,過點B作于點B,交CG的延長線于點F,連接DF交AB于點E.
(1)求證:;
(2)求證:AB垂直平分DF;
(3)連接AF,試判斷的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某加工廠投資興建2條全自動生產線和1條半自動生產線共需資金26萬元,而投資興建1條全自動生產線和3條半自動生產線共需資金28萬元
(1)求每條全自動生產線和半自動生產線的成本各為多少萬元?
(2)據(jù)預測,2015年每條全自動生產線的毛利潤為26萬元,每條半自動生產線的毛利潤為16萬元.這-年,該加工廠共投資興建10條生產線,若想獲得不少于120萬元的純利潤,則2015年該加工廠至少需投資興建多少條全自動生產線?(純利潤=毛利潤-成本)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com