【題目】已知△ABC為等邊三角形,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B,點(diǎn)C重合).以AD為邊作等邊三角形ADE,連接CE.
(1)如圖1,當(dāng)點(diǎn)D在邊BC上時(shí).求證:△ABD≌△ACE;
(2)如圖2,當(dāng)點(diǎn)D在邊BC的延長(zhǎng)線上時(shí),其他條件不變,請(qǐng)寫(xiě)出BC,DC,CE之間存在的數(shù)量關(guān)系,并寫(xiě)出證明過(guò)程.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析
【解析】
(1)根據(jù)等邊三角形的性質(zhì)就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,進(jìn)而就可以得出△ABD≌△ACE;
(2)由等邊三角形的性質(zhì)就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,進(jìn)而就可以得出△ABD≌△ACE,就可以得出BC+CD=CE.
(1)∵△ABC和△ADE是等邊三角形,
∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.
∴∠BAC∠DAC=∠DAE∠DAC,
∴∠BAD=∠EAC.
在△ABD和△ACE中,
∴△ABD≌△ACE(SAS).
(2)BC+CD=CE.
∵△ABC和△ADE是等邊三角形,
∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.
∴∠BAC+∠DAC=∠DAE+∠DAC,
∴∠BAD=∠EAC.
在△ABD和△ACE中,
∴△ABD≌△ACE(SAS).
∴BD=CE.
∵BD=BC+CD,
∴CE=BC+CD;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=(2m+1)x+m﹣3.
(1)若函數(shù)圖象經(jīng)過(guò)原點(diǎn),求m的值;
(2)若這個(gè)函數(shù)是一次函數(shù),且y隨著x的增大而減小,求m的取值范圍;
(3)若這個(gè)函數(shù)是一次函數(shù),且圖象不經(jīng)過(guò)第四象限,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,過(guò)對(duì)角線上一點(diǎn)作,,且,,則( )
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線經(jīng)過(guò)點(diǎn),與軸負(fù)半軸交于點(diǎn),與軸交于點(diǎn),且.
(1)求拋物線的解析式;
(2)點(diǎn)在軸上,且,求點(diǎn)的坐標(biāo);
(3)點(diǎn)在拋物線上,點(diǎn)在拋物線的對(duì)稱(chēng)軸上,是否存在以點(diǎn),,,為頂點(diǎn)的四邊形是平行四邊形?若存在。求出所有符合條件的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P在∠MON的角平分線上,過(guò)點(diǎn)P作OP的垂線交OM,ON于C、D,PA⊥OM.PB⊥ON,垂足分別為A、B,EP∥BD,則下列結(jié)論錯(cuò)誤的是( )
A.CP=PDB.PA=PBC.PE=OED.OB=CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是“求作∠AOB的角平分線”的尺規(guī)作圖過(guò)程.
已知:如圖,鈍角∠AOB.
求作:∠AOB的角平分線.
作法:
①在OA和OB上,分別截取OD、OE,使OD=OE;
②分別以D、E為圓心,大于DE的長(zhǎng)為半徑作弧,在∠AOB內(nèi),兩弧交于點(diǎn)C;
③作射線OC.
所以射線OC就是所求作的∠AOB的角平分線.
請(qǐng)回答:該尺規(guī)作圖的依據(jù)是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰直角△ABC中,∠CAB=90°,F(xiàn)是AB邊上一點(diǎn),作射線CF,過(guò)點(diǎn)B作BG⊥CF于點(diǎn)G,連接AG.
(1)求證:∠ABG=∠ACF;
(2)用等式表示線段CG,AG,BG之間的等量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某社區(qū)決定購(gòu)置一批共享單車(chē),經(jīng)市場(chǎng)調(diào)查得知,購(gòu)買(mǎi)3輛男式單車(chē)與4輛女式單車(chē)費(fèi)用相同,購(gòu)買(mǎi)5輛男式單車(chē)與4輛女式單車(chē)共需1600元.
(1)求男式單車(chē)和女式單車(chē)每輛分別是多少元?
(2)該社區(qū)要求男式單車(chē)比女式單車(chē)多4輛,兩種單車(chē)至少需要22輛,購(gòu)置兩種單車(chē)的費(fèi)用不超過(guò)5000元,問(wèn)該社區(qū)有幾種購(gòu)置方案?怎樣的購(gòu)置才能使所需總費(fèi)用最低?最低費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的一元二次方程.
若是這個(gè)方程的一個(gè)根,求的值和方程的另一個(gè)根;
求證:對(duì)于任意實(shí)數(shù),這個(gè)方程都有兩個(gè)不相等的實(shí)數(shù)根.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com