【題目】如圖,動點在雙曲線上,動點在雙曲線上,且直線軸,若點的坐標(biāo)是,點的橫坐標(biāo)為

當(dāng)取不同的值時,的面積________(填變化或者不變化”);

線段的長可以用表示為________;

若點的坐標(biāo)為,請問是否存在常數(shù),使得的面積等于?若有,請求出的值;若沒有,請說明理由.

【答案】(1)不變化;(2);(3)

【解析】

(1)利用t表示出A、B的縱坐標(biāo),則AB的長即可利用t表示出來,利用三角形的面積公式求解,即可判斷;

(2)根據(jù)(1)的過程即可求解;

(3)分t>4t<4兩種情況進行求解,首先利用t表示出AB邊上的高,根據(jù)三角形的面積公式列方程求解.

(1)當(dāng)x=t時,A的縱坐標(biāo)是:,B的縱坐標(biāo)是:

AB=,

SABCAB(t)=×()×(t)=

則當(dāng)t取不同的值時,ABC的面積不變化.

故答案為:不變化;

代入,得,

代入得:

線段的長可以用表示為:

故答案是:;

當(dāng)邊上的高是:,則,

解得:

當(dāng)時,邊上的高是:,則,

解得:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在平面直角坐標(biāo)系中,ABC各頂點的坐標(biāo)分別為:A4,0),B﹣1,4),C﹣31

1)在圖中作A′B′C′使A′B′C′ABC關(guān)于x軸對稱;

2)寫出點A′B′C′的坐標(biāo);

3)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖,已知∠MAN120°,AC平分∠MAN,∠ABC=∠ADC90°,則能得到如下兩個結(jié)論:①DCBC;②AD+ABAC 請你證明結(jié)論

2)如圖,把(1)中的條件“∠ABC=∠ADC90°”改為∠ABC+ADC180°,其他條件不變,則(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由.

3)如圖3,如果DAM的反向延長線上,把(1)中的條件“∠ABC=∠ADC90°”改為∠ABC=∠ADC,其他條件不變,(1)中的結(jié)論是否仍然成立?若成立,請直接回答;若不成立,你又能得出什么結(jié)論,直接寫出你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在不透明的口袋中,有四只形狀、大小、質(zhì)地完全相同的小球,四只小球上分別標(biāo)有數(shù)字,,、小明先從盒子里隨機取出一只小球(不放回),記下數(shù)字作為平面直角坐標(biāo)系內(nèi)點的橫坐標(biāo);再由小華隨機取出一只小球,記下數(shù)字作為平面直角坐標(biāo)系內(nèi)點的縱坐標(biāo).

用列表法或畫樹狀圖,表示所有這些點的坐標(biāo);

小剛為小明、小華兩人設(shè)計了一個游戲:當(dāng)上述中的點在正比例函數(shù)圖象上方時小明獲勝,否則小華獲勝、你認為這個游戲公平嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形OAPB、ADFE的頂點A、D. B在坐標(biāo)軸上,點BAP上,點PF在函數(shù),已知正方形OAPB的面積是9.

(1)k的值和直線OP的解析式;

(2)求正方形ADFE的邊長

(3)函數(shù)在第三象限的圖像上是否存在一點Q,使得ABQ的面積為10.5?若存在,求出Q點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,AB=AC,BDAC于點D,CEAB于點E,CEBD交于點O,AO的延長線交BC于點F,則圖中全等的三角形有(

A.8B.7C.6D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】仔細閱讀下面例題,解答問題

例題:已知二次三項式x24x+m有一個因式是(x+3),求另一個因式以及m的值.

解:設(shè)另一個因式為(x+n),得x24x+m=(x+3)(x+n),

x24x+mx2+n+3x+3n

解得:n=﹣7m=﹣21

∴另一個因式為(x7),m的值為﹣21

問題:

1)若二次三項式x25x+6可分解為(x2)(x+a),則a   ;

2)若二次三項式2x2+bx5可分解為(2x1)(x+5),則b   

3)仿照以上方法解答下面問題:若二次三項式2x2+3xk有一個因式是(2x5),求另一個因式以及k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC=90°,AB=3,BC=4DC=12,AD=13,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等邊三角形,AQPQ,PRAB于點R,PSAC于點S,PRPS,則下列結(jié)論:①APBC;②ASAR;③QPAR;④△BRP≌△QSP.正確的有( )

A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案