【題目】如圖,某山頂上建有手機信號中轉(zhuǎn)塔AB,在地面D處測得塔尖的仰角∠ADC=60°,塔底的仰角∠BDC=45°,點D距離塔AB所在直線的距離DC為100米,求手機信號中轉(zhuǎn)塔AB的高度(參考數(shù)據(jù): ≈1.414, ≈1.732,結(jié)果保留整數(shù)).
【答案】解:由題意可知,△ACD與△BCD都是直角三角形.
在Rt△BCD中,∵∠BDC=45°,
∴BC=CD=100米.
在Rt△ACD中,∵∠ADC=60°,CD=100米,
∴tan∠ADC= ,即 = ,
∴AC=100 ,
∴AB=AC﹣BC=100( ﹣1)≈73(米).
答:手機信號中轉(zhuǎn)塔的高度約為73米
【解析】先在Rt△BCD中,根據(jù)∠BDC=45°,得出BC=CD=100;再在Rt△ACD中,根據(jù)正切函數(shù)的定義,求出AC=100 ,然后由AB=AC﹣BC即可求解.
【考點精析】本題主要考查了關(guān)于仰角俯角問題的相關(guān)知識點,需要掌握仰角:視線在水平線上方的角;俯角:視線在水平線下方的角才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖的△ABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直線AG分別交DE、BC于M、N兩點.若∠B=90°,AB=4,BC=3,EF=1,則BN的長度為何?( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】勾股定理是一條古老的數(shù)學(xué)定理,它有很多種證明方法,我國漢代數(shù)學(xué)家趙爽根據(jù)弦圖,利用面積進(jìn)行了證明.著名數(shù)學(xué)家華羅庚提出把“數(shù)形關(guān)系”(勾股定理)帶到其他星球,作為地球人與其他星球“人”進(jìn)行第一次“談話”的語言.
請根據(jù)圖1中直角三角形敘述勾股定理.
以圖1中的直角三角形為基礎(chǔ),可以構(gòu)造出以a,b為底,以a+b為高的直角梯形(如圖2).請你利用圖2,驗證勾股定理;
利用圖2中的直角梯形,我們可以證明.其證明步驟如下:
∵BC=a+b,AD=_____;
又∵在直角梯形ABCD中有BC_____AD(填大小關(guān)系),即_____.
∴.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,∠A=60°,點D是線段BC的中點,∠EDF=120°,DE與線段AB相交于點E,DF與線段AC(或AC的延長線)相交于點F.
(1)如圖1,若DF⊥AC,垂足為F,AB=4,求BE的長;
(2)如圖2,將(1)中的∠EDF繞點D順時針旋轉(zhuǎn)一定的角度,DF仍與線段AC相交于點F.求證:BE+CF= AB.
(3)如圖3,若∠EDF的兩邊分別交AB,AC的延長線于E、F兩點,(2)中的結(jié)論還成立嗎?如果成立,請證明;如果不成立,請直接寫出線段BE,AB,CF之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC中,CD⊥AB于D,且BD : AD : CD=2 : 3 : 4,
(1)求證:AB=AC;
(2)已知S△ABC=40cm2,如圖2,動點M從點B出發(fā)以每秒1cm的速度沿線段BA向點A 運動,同時動點N從點A出發(fā)以相同速度沿線段AC向點C運動,當(dāng)其中一點到達(dá)終點時整個運動都停止. 設(shè)點M運動的時間為t(秒),
①若△DMN的邊與BC平行,求t的值;
②若點E是邊AC的中點,問在點M運動的過程中,△MDE能否成為等腰三角形?若能,求出t的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將Rt△ABC繞直角頂點順時針旋轉(zhuǎn)90°,得到△A′B′C′,連接AA′,若∠1=22°,則∠B的度數(shù)是( )
A.67°
B.62°
C.82°
D.72°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“龜兔首次賽跑”之后,輸了比賽的兔子沒有氣餒,總結(jié)反思后,和烏龜約定再賽一場.圖中的函數(shù)圖象刻畫了“龜兔再次賽跑”的故事(x表示烏龜從起點出發(fā)所行的時間,y1表示烏龜所行的路程,y2表示兔子所行的路程).有下列說法:
①兔子和烏龜同時從起點出發(fā);
②“龜兔再次賽跑”的路程為1000米;
③烏龜在途中休息了10分鐘;
④兔子在途中750米處追上烏龜.
其中正確的說法共有____________個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:有一個直角三角形ABC,∠C=90°,AC=10,BC=5,一條線段PQ=AB,P、Q兩點分別在AC和過點A且垂直于AC的射線AX上運動,問P點運動到離A的距離等于___________時,ΔABC和ΔPQA全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,⊙P的圓心是(2,a)(a>2),半徑為2,函數(shù)y=x的圖象被⊙P截得的弦AB的長為 ,則a的值是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com