【題目】四邊形ABCD中,AB DCBC=b,AB=AC=AD=a,如圖24-1-4-11,求BD的長.

圖24-1-4-11

【答案】解:∵AB=AC=AD=a,∴點BC、DA點距離相等.故以A為圓心,以a為半徑作⊙A , 并延長BA交⊙AE , 連結DE.
ABCD , ∴弧 BC=弧DE.∴BC=DE=b.
BE為⊙A的直徑,∴∠EDB=90°.
在Rt△EDB中,BD= = ,∴BD的長為 .
【解析】∵AB=AC=AD=a,∴點B、C、D到A點距離相等.故以A為圓心,以a為半徑作⊙A,并延長BA交⊙A于E,連結DE.
∵AB∥CD,∴弧 BC=弧DE.∴BC=DE=b.
∵BE為⊙A的直徑,∴∠EDB=90°.
在Rt△EDB中,BD= = ,∴BD的長為 .
【考點精析】關于本題考查的勾股定理的概念和圓周角定理,需要了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,大、中、小三個圓圈分別表示有理數(shù)集合、整數(shù)集合、自然數(shù)集合,把這三個圓圈如圖②所示疊放在一起,形成大圓環(huán)A和小圓環(huán)B,則小圓環(huán)B表示的是負整數(shù)集合.請你把-20,0,3.14,-,5填入圖②相應的位置中,并寫出大圓環(huán)A所表示集合的名稱.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的長為6,寬為3,點O1為矩形的中心,⊙O2的半徑為1,O1O2⊥AB于點P,O1O2=6.若⊙O2繞點P按順時針方向旋轉360°,在旋轉過程中,⊙O2與矩形的邊只有一個公共點的情況一共出現(xiàn)( 。

A.3次
B.4次
C.5次
D.6次

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)-24×

(2)-9+5×(-6)-(-4)2÷(-8);

(3)0.25×(-2)2-[4÷+1]+(-1)2018;

(4)-42÷-[].

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個3×3的方格中填寫了9個數(shù)字,使得每行、每列、每條對角線上的三個數(shù)之和相等,得到的3×3的方格稱為一個三階幻方.

1)在圖1中空格處填上合適的數(shù)字,使它構成一個三階幻方;

2)如圖2的方格中填寫了一些數(shù)和字母,當x+y的值為多少時,它能構成一個三階幻方.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖17Z10是由邊長為1的小正方形組成的網(wǎng)格

(1)求四邊形ABCD的面積;

(2)你能判斷ADCD的位置關系嗎?說出你的理由

17Z10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠BAC=90°,B=45°,BC=10 cm,過點AADBC,且點D在點A的右側.點P從點A出發(fā)沿射線AD方向以每秒1cm的速度運動,同時點Q從點C出發(fā)沿射線CB方向以每秒2cm的速度運動,在線段QC上取點E,使得QE =2cm,連結PE,設點P的運動時間為t秒.

1)若PEBC,則①PE= cmCE= 用含t的式子表示);

②求BQ的長;

2)請問是否存在t的值,使以A,B,E,P為頂點的四邊形為平行四邊形?若存在,求出t的值;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】嘉淇同學要證明命題兩組對邊分別相等的四邊形是平行四邊形是正確的,她先用尺規(guī)作出了如圖1的四邊形ABCD,并寫出了如下不完整的已知和求證.

已知:如圖1,在四邊形ABCD中,BC=AD,AB=

求證:四邊形ABCD 四邊形.

(1)在方框中填空,以補全已知和求證;

(2)按嘉淇同學的思路寫出證明過程;

(3)用文字敘述所證命題的逆命題.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點D,E分別是AC,AB上的兩點,且 = = ,若△ADE的面積為1cm2 , 則四邊形EBCD的面積為( )cm2

A.2
B.3
C.4
D.5

查看答案和解析>>

同步練習冊答案