【題目】在平面直角坐標系中, △ABC三個頂點的位置如圖(每個小正方形的邊長均為1).

(1)請畫出△ABC沿x軸向右平移3個單位長度,再沿y軸向上平移2個單位長度后的△A′B′C′(其中A′、B′、C′分別是A、B、C的對應(yīng)點,不寫畫法)

(2)直接寫出A′、B′、C′三點的坐標:

A′(___________); B′(___________);C′(___________)。

(3)求△ABC的面積。

【答案】(1)作圖見解析;(2)A′(0,5); B′(-1,3);C′(4,0);(3)6.5

【解析】(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C平移后的對應(yīng)點A′、B′、C′的位置,然后順次連接即可;(2)根據(jù)平面直角坐標系寫出各點的坐標即可;(3)利用三角形所在的矩形的面積減去四周三個小直角三角形的面積,列式計算即可得解.

解:(1)△A′B′C′如圖所示;

(2)A′(0,5),B′(-1,3),C′(4,0);
(3)△ABC的面積=5×5-×1×2-×5×3-×4×5
=25-1-7.5-10
=25-18.5
=6.5.

“點睛”本題考查了利用平移變換作圖,三角形的面積,需熟練掌握網(wǎng)格結(jié)構(gòu),準確找出對應(yīng)點的位置.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下面的文字,然后解答問題.

大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部寫出來,于是小明用﹣1表示的小數(shù)部分,你同意小明的表示方法嗎?事實上,小明的表示方法是有道理的,因為的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分.

由此我們還可以得到一個真命題:如果=x+y,其中x是整數(shù),且0<y<1,那么x=1,y=﹣1.

請解答下列問題:

(1)如果=a+b,其中a是整數(shù),且0<b<1,那么a=   ,b=   ;

(2)已知2+=m+n,其中m是整數(shù),且0<n<1,求|m﹣n|的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】高致病性禽流感是比SARS傳染速度更快的傳染。疄榉乐骨萘鞲新樱(guī)定:離疫點3km范圍內(nèi)為撲殺區(qū);離疫點3km~5km范圍內(nèi)為免疫區(qū),對撲殺區(qū)與免疫區(qū)內(nèi)的村莊、道路實行全封閉管理.現(xiàn)有一條筆直的公路AB通過禽流感病區(qū),如圖,在撲殺區(qū)內(nèi)公路CD長為4km.

(1)請用直尺和圓規(guī)找出疫點O(不寫作法,保留作圖痕跡);
(2)求這條公路在免疫區(qū)內(nèi)有多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABD和∠BDC的平分線交于E,BE交CD于點F,∠1+∠2=90°

(1)試說明:AB∥CD;

(2)∠2=35°,求∠BFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知BADBCE均為等腰直角三角形,∠BAD=BCE=90°,點MDE的中點.過點EAD平行的直線交射線AM于點N

(1)當A,BC三點在同一直線上時(如圖1),求證:MAN的中點;

(2)將圖1中BCE繞點B旋轉(zhuǎn),當A,BE三點在同一直線上時(如圖2),求證:CAN為等腰直角三角形;

(3)將圖1中BCE繞點B旋轉(zhuǎn)到圖3的位置時,(2)中的結(jié)論是否仍然成立?若成立,試證明之;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,ABCD,A = D,試說明 ACDE 成立的理由.

下面是彬彬同學(xué)進行的推理,請你將彬彬同學(xué)的推理過程補充完整。

解:∵ AB CD (已知)

A = (兩直線平行,內(nèi)錯角相等)

又∵ A = D( )

= (等量代換)

AC DE ( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:x42x+1互為相反數(shù).則:x_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于一個圖形,通過兩種不同的方法計算它的面積,可以得到一個數(shù)學(xué)等式,例如圖1可以得到(a+b)2=a2+2ab+b2,請解答下列問題:

(1)寫出圖2中所表示的數(shù)學(xué)等式   。

(2)根據(jù)整式乘法的運算法則,通過計算驗證上述等式。

(3)利用(1)中得到的結(jié)論,解決下面的問題:

a+b+c=10,ab+ac+bc=35,a2+b2+c2= .

(4)小明同學(xué)用圖3x張邊長為a的正方形,y張邊長為b的正方形z張邊長分別為ab的長方形紙片拼出一個面積為(5a+7b)(9a+4b)長方形,x+y+z=   。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平面直角坐標系中,四邊形ABCD是長方形,∠A=B=C=D=90°,ABCD,AB=CD=8,AD=BC=6,D點與原點重合,坐標為(0,0).

(1)直接寫出點B的坐標__________.

(2)動點P從點A出發(fā)以每秒3個單位長度的速度向終點B勻速運動,動點Q從點C出發(fā)以每秒4個單位長度的速度沿射線CD方向勻速運動,若P,Q兩點同時出發(fā),設(shè)運動時間為t秒,當t為何值時,PQy軸?

查看答案和解析>>

同步練習(xí)冊答案