【題目】在△ABC中,ABAC,點P為△ABC所在平面內(nèi)一點過點P分別作PEACAB于點E,PFABBC于點D,交AC于點F

1)觀察猜想

如圖1,當(dāng)點PBC邊上時,此時點P、D重合,試猜想PD,PE,PFAB的數(shù)量關(guān)系:   

2)類比探究

如圖2,當(dāng)點P在△ABC內(nèi)時,過點PMNBCAB于點M,交AC于點N,試寫出PD,PEPFAB的數(shù)量關(guān)系,并加以證明.

3)解決問題

如圖3,當(dāng)點P在△ABC外時,若AB6,PD1,請直接寫出平行四邊形PEAF的周長   

【答案】1PD+PE+PFAB;(2PD+PE+PFAB,見解析;(314

【解析】

1)由PEAC,PFAB可判斷四邊形AEPF為平行四邊形,根據(jù)平行線的性質(zhì)得∠1=∠C,根據(jù)平行四邊形的性質(zhì)得PFAE,再根據(jù)等腰三角形的性質(zhì)得∠B=∠C,則∠B=∠1,則可根據(jù)等腰三角形的判定得PEBE,所以PE+PFAB;

2)因為四邊形PEAF為平行四邊形,所以PEAF,又三角形FDC為等腰三角形,所以FDPF+PDFC,即PE+PD+PFACAB;

3)過點PMNBC分別交AB、ACMN兩點,推出PE+PFAM,再推出MBPD即可得到結(jié)論.

解:(1)答:PD+PE+PFAB

證明如下:∵點PBC上,

PD0,

PEAC,PFAB,

∴四邊形PFAE是平行四邊形,

PFAE,

PEAC,

∴∠BPE=∠C,

∴∠B=∠BPE,

PEBE

PE+PFBE+AEAB,

PD0,

PD+PE+PFAB,

故答案為:PD+PE+PFAB

2)如圖2,結(jié)論成立:PD+PE+PFAB

證明:過點PMNBC分別交AB,ACM,N兩點,

PEAC,PFAB,

∴四邊形AEPF是平行四邊形,

MNBC,PFAB,

∴四邊形BDPM是平行四邊形,

AEPF,∠EPM=∠ANM=∠C,

ABAC

∴∠EMP=∠B,

∴∠EMP=∠EPM,

PEEM

PE+PFAE+EMAM

∵四邊形BDPM是平行四邊形,

MBPD

PD+PE+PFMB+AMAB

PD+PE+PFAB;

3)如圖3,過點PMNBC分別交AB、AC延長線于M、N兩點.

PEAC,PFAB,

∴四邊形PEAF是平行四邊形,

PFAE

ABAC,

∴∠B=∠C,

MNBC,

∴∠ANM=∠C=∠B=∠AMN

PEAC,

∴∠EPM=∠FNP

∴∠AMN=∠FPN,

∴∠EPM=∠EMP

PEME,

AE+MEAM

PE+PFAM,

MNCBDFAB,

∴四邊形BDPM是平行四邊形,

MBPD,

PE+PFPDAMMBAB,

PE+PFAB+PD6+17

∴平行四邊形PEAF的周長=14,

故答案為:14

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每一小正方形的邊長為1,格點△ABC(三個頂點在相應(yīng)的小正方形的頂點處)在如圖所示的位置:

(1) △ABC的面積為___________ 直接寫出)

(2) 在網(wǎng)格中畫出線段AB繞格點P順時針旋轉(zhuǎn)90°之后的對應(yīng)線段A1B1(點A1對應(yīng)點A

(3) (2)的基礎(chǔ)上直接寫出___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】脫式計算(能簡算的要簡算,并寫出簡算過程)

6.8×10168×0.1

2.5×2.9+2.9+5.8

5.8÷

3.25×3.25×+2×325%

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:在平面直角坐標(biāo)系中,圖形G上點P(x,y)的縱坐標(biāo)y與其橫坐標(biāo)x的差yx稱為P點的“坐標(biāo)差”,而圖形G上所有點的“坐標(biāo)差”中的最大值稱為圖形G的“特征值”

(1)①點A(1,3) 的“坐標(biāo)差”為

②拋物線y=x2+3x+3的“特征值”為 。

(2)某二次函數(shù)y=x2+bx+c(c≠0) 的“特征值”為1,點B(m,0)與點C分別是此二次函數(shù)的圖象與x軸和y軸的交點,且點B與點C的“坐標(biāo)差”相等。

①直接寫出m= (用含c的式子表示)

②求此二次函數(shù)的表達(dá)式。

(3)如圖,在平面直角坐標(biāo)系xOy中,以M(2,3)為圓心,2為半徑的圓與直線y=x相交于點D、E請直接寫出⊙M的“特征值”為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義一種對正整數(shù)n的“F運算”:當(dāng)n為奇數(shù)時,結(jié)果為3n+5;當(dāng)n為偶數(shù)時,結(jié)果為(其中k是使為奇數(shù)的最小正整數(shù)),并且運算重復(fù)進行.例如:取n26,則運算過程如圖:

那么當(dāng)n26時,第2016次“F運算”的結(jié)果是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)課外興趣活動小組準(zhǔn)備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊由長為30米的籬笆圍成.已知墻長為18米(如圖所示),設(shè)這個苗圃園垂直于墻的一邊長為x米.

(1)若苗圃園的面積為72平方米,求x;

(2)若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求若干個相同的不為零的有理數(shù)的除法運算叫做除方. 如:2÷2÷2,(-3)÷(-3)÷(-3 )÷( -3). 類比有理數(shù)的乘方,我們把 2÷2÷2 記作 2,讀作“2 的圈 3 次方”. (-3)÷(-3)÷(-3 )÷( -3)記作(-3),讀作“-3 的圈 4 次方”.

一般地,把a≠0)記作a,記作a 的圈c次方”.

(1)直接寫出計算結(jié)果:2= ,(-3) = ,= .

(2)計算 24÷23 + (-8)×2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在Rt△ABC中,∠C=90°,BC=6,AC=8, P是斜邊AB上一動點,PDAC于點D,PEBC于點E,則DE的長不可能是(

A.4B.5C.6D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線與直線的圖象如圖所示,則下列說法:

①當(dāng)0<x<2時, y1>y2;y1x的增大而增大的取值范圍是x<2;③使得y2大于4x值不存在;④若y1=2,則x=2﹣x=1.其中正確的有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊答案