【題目】已知:射線OP∥AE
(1)如圖1,∠AOP的角平分線交射線AE與點B,若∠BOP=58°,求∠A的度數(shù).
(2)如圖2,若點C在射線AE上,OB平分∠AOC交AE于點B,OD平分∠COP交AE于點D,∠ADO=39°,求∠ABO﹣∠AOB的度數(shù).
(3)如圖3,若∠A=m,依次作出∠AOP的角平分線OB,∠BOP的角平分線OB1,∠B1OP的角平分線OB2,∠Bn﹣1OP的角平分線OBn,其中點B,B1,B2,…,Bn﹣1,Bn都在射線AE上,試求∠ABnO的度數(shù).
【答案】(1)°;(2);(3)
【解析】
(1)利用角平分線的性質(zhì)求得∠,利用平行線的性質(zhì)和平角的定義即可求得答案;
(2)利用角平分線的性質(zhì)求得∠及∠,利用平行線的性質(zhì)通過計算可求得∠ABO﹣∠AOB的度數(shù);
(3)利用角平分線和平行線的性質(zhì),依次求得∠、∠、∠與的代數(shù)式,尋找規(guī)律,求出∠ABnO的度數(shù).
(1)如圖1,∵平分∠
∴∠°,
∵,
∴°,
∴°;
(2)如圖2,
∵平分∠
∴∠
設(shè)∠,∴∠
∵平分∠,且∠ADO=39°,
∴∠
∵,∴∠
∴∠
∵,
∴∠∠
∴∠;
(3)如圖3,
∵∠,
由(1)可知,∠,
∠,
由上述方法可推出:
∠,
…
則∠.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D是AC的中點,E是線段BC延長線上一點,過點A作BE的平行線與線段ED的延長線交于點F,連接AE、CF.
(1)求證:AF=CE;
(2)如果AC=EF,且∠ACB=135°,試判斷四邊形AFCE是什么樣的四邊形,并證明你的結(jié)論
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)y1=(x>0)的圖象與一次函數(shù)y2=﹣x+b的圖象交于A,B兩點,其中A(1,2)
(1)求這兩個函數(shù)解析式;
(2)在y軸上求作一點P,使PA+PB的值最小,并直接寫出此時點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條不完整的數(shù)軸上從左到右有點A,B,D,C,其中AB=2,BD=3,DC=1,如圖所示,設(shè)點A,B,D,C所對應(yīng)數(shù)的和是p.
(1)若以B為原點.寫出點A,D,C所對應(yīng)的數(shù),并計算p的值;
(2)①若原點O在圖中數(shù)軸上點C的右邊,且CO=x,p=﹣71,求x.
②此時,若數(shù)軸上存在一點E,使得AE=2CE,求點E所對應(yīng)的數(shù)(直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上兩點A、B對應(yīng)的數(shù)分別為﹣1、3,點P為數(shù)軸上一動點,其對應(yīng)的數(shù)為x.
(1)若點P到點A、點B的距離相等,求點P對應(yīng)的數(shù);
(2)數(shù)軸上是否存在點P,使點P到點A、點B的距離之和為8?若存在,請求出x的值;若不存在,說明理由;
(3)現(xiàn)在點A、點B分別以2個單位長度/秒和0.5個單位長度/秒的速度同時向右運動,點P以6個單位長度/秒的速度同時從O點向左運動.當(dāng)點A與點B之間的距離為3個單位長度時,求點P所對應(yīng)的數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某牛奶加工廠現(xiàn)有鮮奶9噸,若在市場上直接銷售鮮奶,每噸可獲取利潤500元;制成酸奶銷售,每噸可獲取利潤1200元;制成奶片銷售,每噸可獲取利潤 2000元。
該加工廠的生產(chǎn)能力是:如制成酸奶,每天可加工3噸;制成奶片,每天可加工1噸。受人員限制,兩種加工方式不可同時進(jìn)行。受氣溫條件限制,這批牛奶必須在4天內(nèi)全部銷售或加工完畢。為此,該廠設(shè)計了兩種可行方案:
方案一:盡可能多地制成奶片,其余直接銷售鮮奶;
方案二:將一部分制成奶片,其余制成酸奶銷售,并恰好4天完成。
你認(rèn)為哪種方案獲利最多?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形中,長為3,長為6,點從出發(fā)沿向以每秒1個單位的速度運動,同時點從出發(fā)沿向以每秒2個單位的速度運動(當(dāng)一個點到達(dá)終點時另一個點也隨之停止運動).若運動的時間為秒,則三角形的面積為______(用含的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,點P從點A出發(fā),以的速度沿折線運動,最終回到點A,設(shè)點P的運動時間為,線段AP的長度為,則能夠反映y與x之間函數(shù)關(guān)系的圖象大致是
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A在數(shù)軸上對應(yīng)的數(shù)是a,點B在數(shù)軸上對應(yīng)的數(shù)是b,且|a+4|+(b﹣1)2=0,現(xiàn)將A、B之間的距離記作|AB|,定義|AB|=|a﹣b|.
(1)求2019b+a的值;
(2)求|AB|的值;
(3)設(shè)點P在數(shù)軸上對應(yīng)的數(shù)是x,當(dāng)|PA|﹣|PB|=2時,求x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com